ترغب بنشر مسار تعليمي؟ اضغط هنا

Difference bases in finite Abelian groups

229   0   0.0 ( 0 )
 نشر من قبل Taras Banakh
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference size of $G$ and is denoted by $Delta[G]$. The fraction $eth[G]:=frac{Delta[G]}{sqrt{|G|}}$ is called the difference characteristic of $G$. Using properies of the Galois rings, we prove recursive upper bounds for the difference sizes and characteristics of finite Abelian groups. In particular, we prove that for a prime number $pge 11$, any finite Abelian $p$-group $G$ has difference characteristic $eth[G]<frac{sqrt{p}-1}{sqrt{p}-3}cdotsup_{kinmathbb N}eth[C_{p^k}]<sqrt{2}cdotfrac{sqrt{p}-1}{sqrt{p}-3}$. Also we calculate the difference sizes of all Abelian groups of cardinality $<96$.



قيم البحث

اقرأ أيضاً

A subset $B$ of an Abelian group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=a-b$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the diffe rence size of $G$ and is denoted by $Delta[G]$. We prove that for every $ninmathbb N$ the cyclic group $C_n$ of order $n$ has difference size $frac{1+sqrt{4|n|-3}}2le Delta[C_n]lefrac32sqrt{n}$. If $nge 9$ (and $nge 2cdot 10^{15}$), then $Delta[C_n]lefrac{12}{sqrt{73}}sqrt{n}$ (and $Delta[C_n]<frac2{sqrt{3}}sqrt{n}$). Also we calculate the difference sizes of all cyclic groups of cardinality $le 100$.
A subset $B$ of a group $G$ is called a difference basis of $G$ if each element $gin G$ can be written as the difference $g=ab^{-1}$ of some elements $a,bin B$. The smallest cardinality $|B|$ of a difference basis $Bsubset G$ is called the difference size of $G$ and is denoted by $Delta[G]$. The fraction $eth[G]:=Delta[G]/{sqrt{|G|}}$ is called the difference characteristic of $G$. We prove that for every $ninmathbb N$ the dihedral group $D_{2n}$ of order $2n$ has the difference characteristic $sqrt{2}leeth[D_{2n}]leqfrac{48}{sqrt{586}}approx1.983$. Moreover, if $nge 2cdot 10^{15}$, then $eth[D_{2n}]<frac{4}{sqrt{6}}approx1.633$. Also we calculate the difference sizes and characteristics of all dihedral groups of cardinality $le80$.
We present a generic algorithm for computing discrete logarithms in a finite abelian p-group H, improving the Pohlig-Hellman algorithm and its generalization to noncyclic groups by Teske. We then give a direct method to compute a basis for H without using a relation matrix. The problem of computing a basis for some or all of the Sylow p-subgroups of an arbitrary finite abelian group G is addressed, yielding a Monte Carlo algorithm to compute the structure of G using O(|G|^0.5) group operations. These results also improve generic algorithms for extracting pth roots in G.
298 - Kevin Zhao 2020
Let $G$ be a finite group. We will say that $M$ and $S$ form a textsl{complete splitting} (textsl{splitting}) of $G$ if every element (nonzero element) $g$ of $G$ has a unique representation of the form $g=ms$ with $min M$ and $sin S$, and $0$ has a such representation (while $0$ has no such representation). In this paper, we determine the structures of complete splittings of finite abelian groups. In particular, for complete splittings of cyclic groups our description is more specific. Furthermore, we show some results for existence and nonexistence of complete splittings of cyclic groups and find a relationship between complete splittings and splittings for finite groups.
The purpose of the article is to provide an unified way to formulate zero-sum invariants. Let $G$ be a finite additive abelian group. Let $B(G)$ denote the set consisting of all nonempty zero-sum sequences over G. For $Omega subset B(G$), let $d_{O mega}(G)$ be the smallest integer $t$ such that every sequence $S$ over $G$ of length $|S|geq t$ has a subsequence in $Omega$.We provide some first results and open problems on $d_{Omega}(G)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا