ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation and Characterization of Thin Arsenic Targets for Stacked-Target Experiments

293   0   0.0 ( 0 )
 نشر من قبل Morgan Blaine Fox
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin uniform arsenic targets suitable for high-fidelity cross section measurements in stacked-target experiments were prepared by electrodeposition of arsenic on titanium backings from aqueous solutions. Electrolytic cells were constructed and capable of arsenic deposits ranging in mass from approximately 1 to 29 mg (0.32-7.22 mg/cm$^2$, 0.57-12.62 $mu$m). Examination of electrodeposit surface morphology by scanning electron microscopy and microanalysis was performed to investigate the uniformity of produced targets. Brief studies of plating growth dynamics and structural properties through cyclic voltammetry were also undertaken. An alternative target fabrication approach by vapor deposition was additionally conducted. We further introduce a non-destructive characterization method for thin targets by neutron activation, which is independent of neutron flux shape, environmental factors, and source geometry, while correcting for any potential scatter or absorption effects.

قيم البحث

اقرأ أيضاً

We have produced in the Nuclear Physics Center in Lisbon thin film self-supported targets of Ag, LiF/Ag and CaF$_2$/Ag by a high vacuum resistance evaporation method. The production setup, materials, methods, characterization and results are described.
Self Supporting isotopically enriched $^{116}$Sn (~380 microgram/cm$^2$), $^{124Sn}$ (~400 microgram/cm$^2$) and $^{112}$Sn (1.7 mg/cm$^2$), $^{120}$Sn (1.6 mg/cm$^2$) have been prepared using resistive heating and Mechanical rolling methods respecti vely at Variable Energy Cyclotron Centre(VECC). Preparation of enriched targets with small amount of material, selection of releasing agent for thin targets and separation of deposited material in solvent were among the several challenges while fabrication of thin targets .These targets has been successfully used in Nuclear Physics Experiments at VECC.
A system of modular sealed gas target cells has been developed for use in electron scattering experiments at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). This system was initially developed to complete the MARATHON experiment w hich required, among other species, tritium as a target material. Thus far, the cells have been loaded with the gas species 3H, 3He, 2H, 1H and 40Ar and operated in nominal beam currents of up to 22.5 uA in Jefferson Labs Hall A. While the gas density of the cells at the time of loading is known, the density of each gas varies uniquely when heated by the electron beam. To extract experimental cross sections using these cells, density dependence on beam current of each target fluid must be determined. In this study, data from measurements with several beam currents within the range of 2.5 to 22.5 uA on each target fluid are presented. Additionally, expressions for the beam current dependent fluid density of each target are developed.
We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power 4He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH3 at a temperature of 1 K and at fields of 2.5 and 5.0 Tesla. The performance of the target material in the electron beam under these conditions will be discussed. Maximum polarizations of 28% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 degrees with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.
The TexAT (Texas Active Target) detector is a new active-target time projection chamber (TPC) that was built at the Cyclotron Institute Texas A$&$M University. The detector is designed to be of general use for nuclear structure and nuclear astrophysi cs experiments with rare isotope beams. TexAT combines a highly segmented Time Projection Chamber (TPC) with two layers of solid state detectors. It provides high efficiency and flexibility for experiments with low intensity exotic beams, allowing for the 3D track reconstruction of the incoming and outgoing particles involved in nuclear reactions and decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا