ترغب بنشر مسار تعليمي؟ اضغط هنا

Texas Active Target (TexAT) detector for experiments with rare isotope beams

80   0   0.0 ( 0 )
 نشر من قبل Grigory Rogachev
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The TexAT (Texas Active Target) detector is a new active-target time projection chamber (TPC) that was built at the Cyclotron Institute Texas A$&$M University. The detector is designed to be of general use for nuclear structure and nuclear astrophysics experiments with rare isotope beams. TexAT combines a highly segmented Time Projection Chamber (TPC) with two layers of solid state detectors. It provides high efficiency and flexibility for experiments with low intensity exotic beams, allowing for the 3D track reconstruction of the incoming and outgoing particles involved in nuclear reactions and decays.



قيم البحث

اقرأ أيضاً

A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival times of ions at the reaction target. The current design is a n adaptation of an assembly used for low-energy beams ($sim$1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon ${}^{56}$Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of $sim$1 mm for beam intensities up to $5times10^{5}$ pps.
Active-target detectors have the potential to address the difficulties associated with the low intensities of radioactive beams. We have developed an active-target detector, the Notre Dame Cube (ND-Cube), to perform experiments with radioactive beams produced at $mathit{TwinSol}$ and to aid in the development of active-target techniques. Various aspects of the ND-Cube and its design were characterized. The ND-Cube was commissioned with a $^{7}$Li beam for measuring $^{40}$Ar + $^{7}$Li fusion reaction cross sections and investigating $^{7}$Li($alpha$,$alpha$)$^{7}$Li scattering events. The ND-Cube will be used to study a range of reactions using light radioactive ions produced at low energy.
107 - K. Schmidt , K. A. Chipps , S. Ahn 2018
The JENSA gas-jet target was designed for experiments with radioactive beams provided by the rare isotope re-accelerator ReA3 at the National Superconducting Cyclotron Laboratory. The gas jet will be the main target for the Separator for Capture Reac tions SECAR at the Facility for Rare Isotope Beams on the campus of Michigan State University, USA. In this work, we describe the advantages of a gas-jet target, detail the current recirculating gas system, and report recent measurements of helium jet thicknesses of up to about $10^{19}$ atoms/cm$^2$. Finally a comparison with other supersonic gas-jet targets is presented.
We have constructed and tested a novel plastic-scintillator-based solid-state active proton target for use in nuclear spectroscopic studies with nuclear reactions induced by an ion beam in inverse kinematics. The active target system, named Stack Str ucture Solid organic Scintillator Active Target (S4AT), consists of five layers of plastic scintillators, each with a 1-mm thickness. To determine the reaction point in the thickness direction, we exploit the difference in the energy losses due to the beam particle and the charged reaction product(s) in the scintillator material. S4AT offers the prospect of a relatively thick target while maintaining a good energy resolution. By considering the relative energy loss between different layers, the energy loss due to unreacted beam particles can be eliminated. Such procedure, made possible by the multi-layer structure, is essential to eliminate the effect of unreacted accompanying beam particles, thus enabling its operation at a moderate beam intensity of up to a few Mcps. We evaluated the performance of S4AT by measuring the elastic proton-proton scattering using a 70-MeV proton beam at Cyclotron and Radioisotope Center (CYRIC), Tohoku University.
Direct nuclear reactions with radioactive ion beams represent an extremely powerful tool to extend the study of fundamental nuclear properties far from stability. These measurements require pure and dense targets to cope with the low beam intensities . The $^3$He cryogenic target HeCTOr has been designed to perform direct nuclear reactions in inverse kinematics. The high density of $^3$He scattering centers, of the order of 10$^{20}$ atoms/cm$^2$, makes it particularly suited for experiments where low-intensity radioactive beams are involved. The target was employed in a first in-beam experiment, where it was coupled to state-of-the-art gamma-ray and particle detectors. It showed excellent stability in gas temperature and density over time. Relevant experimental quantities, such as total target thickness, energy resolution and gamma-ray absorption, were determined through dedicated Geant4 simulations and found to be in good agreement with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا