ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of Isotopically enriched $^{112,116,120,124}$Sn targets at VECC

386   0   0.0 ( 0 )
 نشر من قبل Ratnesh Pandey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Self Supporting isotopically enriched $^{116}$Sn (~380 microgram/cm$^2$), $^{124Sn}$ (~400 microgram/cm$^2$) and $^{112}$Sn (1.7 mg/cm$^2$), $^{120}$Sn (1.6 mg/cm$^2$) have been prepared using resistive heating and Mechanical rolling methods respectively at Variable Energy Cyclotron Centre(VECC). Preparation of enriched targets with small amount of material, selection of releasing agent for thin targets and separation of deposited material in solvent were among the several challenges while fabrication of thin targets .These targets has been successfully used in Nuclear Physics Experiments at VECC.



قيم البحث

اقرأ أيضاً

Thin uniform arsenic targets suitable for high-fidelity cross section measurements in stacked-target experiments were prepared by electrodeposition of arsenic on titanium backings from aqueous solutions. Electrolytic cells were constructed and capabl e of arsenic deposits ranging in mass from approximately 1 to 29 mg (0.32-7.22 mg/cm$^2$, 0.57-12.62 $mu$m). Examination of electrodeposit surface morphology by scanning electron microscopy and microanalysis was performed to investigate the uniformity of produced targets. Brief studies of plating growth dynamics and structural properties through cyclic voltammetry were also undertaken. An alternative target fabrication approach by vapor deposition was additionally conducted. We further introduce a non-destructive characterization method for thin targets by neutron activation, which is independent of neutron flux shape, environmental factors, and source geometry, while correcting for any potential scatter or absorption effects.
A large 4$pi$ array of charged particle detectors has been developed at Variable Energy Cyclotron Centre to facilitate high resolution charged particle reaction and spectroscopy studies by detecting event-by-event the charged reaction products emitte d in heavy ion reactions at energy $sim$ 10-60 MeV/A. The forward part ($theta sim pm $ $7^{0}$ - $pm 45^{0}$) of the array consists of 24 highly granular, high resolution charged particle telescopes, each of which is made by three layers [single sided silicon strip($Delta$E) + double sided silicon strip (E/$Delta$E) + CsI(Tl)(E)]of detectors. The backward part of the array consists of 112 CsI(Tl) detectors which are capable of detecting primarily the light charged particles (Z $le$ 2) emitted in the angular range of $theta sim pm $ $45^{0}$ - $pm 175^{0}$. The extreme forward part of the array ($theta sim pm $ $3^{0}$ - $pm 7^{0}$) is made up of 32 slow-fast plastic phoswich detectors that are capable of detecting light (Z $le$2) and heavy charged particles (3 $le$ Z $lesssim$ 20) as well as handling high count rates. The design, construction and characterization of the array has been described.
We have produced in the Nuclear Physics Center in Lisbon thin film self-supported targets of Ag, LiF/Ag and CaF$_2$/Ag by a high vacuum resistance evaporation method. The production setup, materials, methods, characterization and results are described.
The general properties needed in targets (sources) for high precision, high accuracy measurements are reviewed. The application of these principles to the problem of developing targets for the Fission TPC is described. Longer term issues, such as the availability of actinide materials, improved knowledge of energy losses and straggling and the stability of targets during irradiation are also discussed.
72 - T. Ohta , M. Fujiwara , T. Hotta 2020
We report on the frozen-spin polarized hydrogen--deuteride (HD) targets for photoproduction experiments at SPring-8/LEPS. Pure HD gas with a small amount of ortho-H2 (~0.1%) was liquefied and solidified by liquid helium. The temperature of the produc ed solid HD was reduced to about 30 mK with a dilution refrigerator. A magnetic field (17 T) was applied to the HD to grow the polarization with the static method. After the aging of the HD at low temperatures in the presence of a high-magnetic field strength for 3 months, the polarization froze. Almost all ortho-H2 molecules were converted to para-H2 molecules that exhibited weak spin interactions with the HD. If the concentration of the ortho-H2 was reduced at the beginning of the aging process, the aging time can be shortened. We have developed a new nuclear magnetic resonance (NMR) system to measure the relaxation times (T1) of the 1H and 2H nuclei with two frequency sweeps at the respective frequencies of 726 and 111 MHz, and succeeded in the monitoring of the polarization build-up at decreasing temperatures from 600 to 30 mK at 17 T. This technique enables us to optimize the concentration of the ortho-H2 and to efficiently polarize the HD target within a shortened aging time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا