ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamically polarized target for the g2p and GEp experiments at Jefferson Lab

362   0   0.0 ( 0 )
 نشر من قبل Joshua Pierce
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power 4He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH3 at a temperature of 1 K and at fields of 2.5 and 5.0 Tesla. The performance of the target material in the electron beam under these conditions will be discussed. Maximum polarizations of 28% and 95% were obtained at those fields, respectively. To satisfy the requirements of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 degrees with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.

قيم البحث

اقرأ أيضاً

The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing HMS and SOS spectrometers design considerations, relevant construction information, and comparisons of simulated and exp erimental results are included. The energy resolution of the HMS and SOS calorimeters is better than $sigma/E sim 6%/sqrt E $, and pion/electron ($pi/e$) separation of about 100:1 has been achieved in energy range 1 -- 5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined $pi^-$ suppression factors by close to a factor of two. For the SHMS spectrometer presently under construction details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter.
63 - T. Horn , H. Mkrtchyan , S. Ali 2016
Hadronic reactions producing strange quarks such as exclusive or semi-inclusive kaon production, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability o f the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer, will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching 10^-2 proton and 10^-3 pion rejection, with kaon detection efficiency better than 95%. The diffusion box of the detector is equipped with 14 five-inch diameter photomultiplier tubes. Its interior walls are covered with Gore diffusive reflector, which is superior to the commonly used Millipore paper and improved the detector performance by 35%. The inner surface of the two aerogel trays with higher refractive index is covered with Millipore paper, however, those two trays with lower aerogel refractive index are again covered with Gore diffusive reflector for higher performance. The measured mean number of photoelectrons in saturation is ~12 for n=1.030, ~sim8 for n=1.020, ~10 for n=1.015, and ~5.5 for n=1.011. The design details, the results of component characterization, and initial performance tests and optimization of the detector are presented.
115 - A. Rakhman , M. Hafez , S. Nanda 2016
A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532~nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064~nm) beam from a ytterbium-doped fiber a mplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO$_{3}$ crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7~kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0~GeV and 50~$mu$A.
141 - Jay Benesch , Yves Roblin 2021
The Continuous Electron Beam Accelerator Facility (CEBAF) was built with a thermionic electron source and the three original experimental hall lines reflected this. A few years after beam delivery began a parity violation experiment was approved and two polarimeters were installed in the Hall A beam line without consultation with the accelerator physics group. The beam raster system was placed after the new Compton polarimeter, before one accelerator quadrupole and four quadrupoles in the new Moller polarimeter. It was very difficult to meet experimental requirements on envelope functions and raster shape with this arrangement so a member of the accelerator physics group had a sixth quadrupole installed downstream of the Moller polarimeter. All of the parity experiments in Hall A have been run with this still-unsatisfactory configuration. The MOLLER experiment is predicated on achieving a 2% error on a 32 ppb asymmetry. Beam line changes are required to meet the systematic error budget. This paper documents the existing beam line, an interim change which can be accomplished during a annual maintenance down, and the final configuration for MOLLER and subsequent experiments.
We present a conceptual design for a polarized $^3$He target for Jefferson Labs CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell inside the CLAS12 5 T solenoid. By transferring this gas to a 20 cm long, 5 K target cell, a target thickness of $3 times 10^{21}$ $^3$He/cm$^2$ will be produced, reaching the detectors specified maximum luminosity with a beam current of 2.5 $mu A$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا