ﻻ يوجد ملخص باللغة العربية
Echo-enabled harmonic generation free-electron lasers (EEHG FELs) are promising candidates to produce fully coherent soft x-ray pulses by virtue of efficient high harmonic frequency up-conversion from UV lasers. The ultimate spectral limit of EEHG, however, remains unclear, because of the broadening and distortions induced in the output spectrum by residual broadband energy modulations in the electron beam. We present a mathematical description of the impact of incoherent (broadband) energy modulations on the bunching spectrum produced by the microbunching instability through both the accelerator and the EEHG line. The model is in agreement with a systematic experimental characterization of the FERMI EEHG FEL in the photon energy range $130-210$ eV. We find that amplification of electron beam energy distortions primarily in the EEHG dispersive sections explains an observed reduction of the FEL spectral brightness that is proportional to the EEHG harmonic number. Local maxima of the FEL spectral brightness and of the spectral stability are found for a suitable balance of the dispersive sections strength and the first seed laser pulse energy. Such characterization provides a benchmark for user experiments and future EEHG implementations designed to reach shorter wavelengths.
Fine time-resolved analysis of matter - i.e. spectroscopy and photon scattering - in the linear response regime requires a fs-scale pulsed, high repetition rate, fully coherent X-ray source. A seeded Free-Electron Laser (FEL) driven by a Super-Conduc
An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overl
We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based the coherent harmonic generation (CHG) and superradiant principles. A CHG scheme is first use
The problem of X-ray Free-Electron Laser operating on self-amplified spontaneous emission in irregular microundulator is considered. The case when the spectrum width of spontaneous radiation is conditioned by the spatial distribution of sources creat
A feasible method is proposed to generate isolated attosecond terawatt x-ray radiation pulses in high-gain free-electron lasers. In the proposed scheme, a frequency chirped laser pulse is employed to generate a gradually-varied spacing current enhanc