ترغب بنشر مسار تعليمي؟ اضغط هنا

Free Electron Laser Generation of X-Ray Poincare Beams

67   0   0.0 ( 0 )
 نشر من قبل Jenny Morgan Ms
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overlap of different coherent transverse light distributions radiated from a bunched electron beam in two consecutive orthogonally polarised undulators. Different transverse profiles are obtained by emitting at a higher harmonic in one or both of the undulators. This method enables the generation of beams structured in their intensity, phase, and polarization - so-called Poincare beams - at high powers with tunable wavelengths. Simulations are used to demonstrate the generation of two different classes of light with spatially inhomogeneous polarization - cylindrical vector beams and full Poincare beams.



قيم البحث

اقرأ أيضاً

In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electr on lasers (XFELs). Further, there is intense interest in the marriage of these two fields, with the goal of producing a very compact XFEL. In this context, recent advances in high gradient radio-frequency cryogenic copper structure research have opened the door to the use of surface electric fields between 250 and 500 MV/m. Such an approach is foreseen to enable a new generation of photoinjectors with six-dimensional beam brightness beyond the current state-of-the-art by well over an order of magnitude. This advance is an essential ingredient enabling an ultra-compact XFEL (UC-XFEL). In addition, one may accelerate these bright beams to GeV scale in less than 10 meters. Such an injector, when combined with inverse free electron laser-based bunching techniques can produce multi-kA beams with unprecedented beam quality, quantified by ~50 nm-rad normalized emittances. These beams, when injected into innovative, short-period (1-10 mm) undulators uniquely enable UC-XFELs having footprints consistent with university-scale laboratories. We describe the architecture and predicted performance of this novel light source, which promises photon production per pulse of a few percent of existing XFEL sources. We review implementation issues including collective beam effects, compact x-ray optics systems, and other relevant technical challenges. To illustrate the potential of such a light source to fundamentally change the current paradigm of XFELs with their limited access, we examine possible applications in biology, chemistry, materials, atomic physics, industry, and medicine which may profit from this new model of performing XFEL science.
301 - L.T. Campbell , A.R. Maier 2016
The effects of a correlated linear energy/velocity chirp in the electron beam in the FEL, and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a `small chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is non-linear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma driven FELs and low energy linac driven FEL test facilities.
The problem of X-ray Free-Electron Laser operating on self-amplified spontaneous emission in irregular microundulator is considered. The case when the spectrum width of spontaneous radiation is conditioned by the spatial distribution of sources creat ing the undulating field is considered. In this case gain function of the stimulated radiation is dozens of times higher than that of the conventional undulators. We propose a model of irregular microundulator, which can be used to construct a drastically cheap and compact X-ray free-electron laser operating on medium energy electron bunch.
A new method to generate short wavelength Free Electron Laser output with modulated polarisation at attosecond timescales is presented. Simulations demonstrate polarisation switching timescales that are four orders of magnitude faster than the curren t state of the art and, at X-Ray wavelengths, approaching the atomic unit of time of approximately $24$~attoseconds. Such polarisation control has significant potential in the study of ultra-fast atomic and molecular processes. The output alternates between either orthogonal linear or circularly polarised light without the need for any polarising optical elements. This facilitates operation at the high brightness X-ray wavelengths associated with FELs. As the method uses an afterburner configuration it would be relatively easy to install at exciting FEL facilities, greatly expanding their research capability.
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا