ﻻ يوجد ملخص باللغة العربية
The problem of X-ray Free-Electron Laser operating on self-amplified spontaneous emission in irregular microundulator is considered. The case when the spectrum width of spontaneous radiation is conditioned by the spatial distribution of sources creating the undulating field is considered. In this case gain function of the stimulated radiation is dozens of times higher than that of the conventional undulators. We propose a model of irregular microundulator, which can be used to construct a drastically cheap and compact X-ray free-electron laser operating on medium energy electron bunch.
In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electr
An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overl
A new method to generate short wavelength Free Electron Laser output with modulated polarisation at attosecond timescales is presented. Simulations demonstrate polarisation switching timescales that are four orders of magnitude faster than the curren
The generation of X-rays and {gamma}-rays based on synchrotron radiation from free electrons, emitted in magnet arrays such as undulators, forms the basis of much of modern X-ray science. This approach has the drawback of requiring very high energy,
Echo-enabled harmonic generation free-electron lasers (EEHG FELs) are promising candidates to produce fully coherent soft x-ray pulses by virtue of efficient high harmonic frequency up-conversion from UV lasers. The ultimate spectral limit of EEHG, h