ﻻ يوجد ملخص باللغة العربية
Fine time-resolved analysis of matter - i.e. spectroscopy and photon scattering - in the linear response regime requires a fs-scale pulsed, high repetition rate, fully coherent X-ray source. A seeded Free-Electron Laser (FEL) driven by a Super-Conducting Linac, generating $10^{8}$-$10^{10}$ coherent photons at 2-5 keV with abou 0.5 MHz of repetition rate, can address this need. The seeding scheme proposed is the Echo-Enabled Harmonic Generation, alimented by a FEL Oscillator working at 13.6 nm with a cavity based on Mo-Si mirrors. The whole chain of the X-ray generation is here described by means of start-to-end simulations. Comparisons with the Self Amplified Spontaneus Emission and a fresh-bunch harmonic cascade performed with similar electron beams show the validity of this scheme.
Echo-enabled harmonic generation free-electron lasers (EEHG FELs) are promising candidates to produce fully coherent soft x-ray pulses by virtue of efficient high harmonic frequency up-conversion from UV lasers. The ultimate spectral limit of EEHG, h
In the field of beam physics, two frontier topics have taken center stage due to their potential to enable new approaches to discovery in a wide swath of science. These areas are: advanced, high gradient acceleration techniques, and x-ray free electr
A setup of a unique x-ray source is put forward employing a relativistic electron beam interacting with two counter-propagating laser pulses in the nonlinear few-photon regime. In contrast to Compton scattering (CS) sources, the envisaged x-ray sourc
Free-electron lasers (FELs) seeded with external lasers hold great promise for generating high power radiation with nearly transform-limited bandwidth in soft x-ray region. However, it has been pointed out that the initial seed laser noise will be am
An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overl