ترغب بنشر مسار تعليمي؟ اضغط هنا

Commutative Lie Group VAE for Disentanglement Learning

97   0   0.0 ( 0 )
 نشر من قبل Xinqi Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data. Traditionally, such a structure is fixed to be a vector space with data variations represented by translations along individual latent dimensions. We argue this simple structure is suboptimal since it requires the model to learn to discard the properties (e.g. different scales of changes, different levels of abstractness) of data variations, which is an extra work than equivariance learning. Instead, we propose to encode the data variations with groups, a structure not only can equivariantly represent variations, but can also be adaptively optimized to preserve the properties of data variations. Considering it is hard to conduct training on group structures, we focus on Lie groups and adopt a parameterization using Lie algebra. Based on the parameterization, some disentanglement learning constraints are naturally derived. A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning. Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.

قيم البحث

اقرأ أيضاً

The key idea of the state-of-the-art VAE-based unsupervised representation disentanglement methods is to minimize the total correlation of the latent variable distributions. However, it has been proved that VAE-based unsupervised disentanglement can not be achieved without introducing other inductive bias. In this paper, we address VAE-based unsupervised disentanglement by leveraging the constraints derived from the Group Theory based definition as the non-probabilistic inductive bias. More specifically, inspired by the nth dihedral group (the permutation group for regular polygons), we propose a specific form of the definition and prove its two equivalent conditions: isomorphism and the constancy of permutations. We further provide an implementation of isomorphism based on two Group constraints: the Abel constraint for the exchangeability and Order constraint for the cyclicity. We then convert them into a self-supervised training loss that can be incorporated into VAE-based models to bridge their gaps from the Group Theory based definition. We train 1800 models covering the most prominent VAE-based models on five datasets to verify the effectiveness of our method. Compared to the original models, the Groupidied VAEs consistently achieve better mean performance with smaller variances, and make meaningful dimensions controllable.
Recent work by Locatello et al. (2018) has shown that an inductive bias is required to disentangle factors of interest in Variational Autoencoder (VAE). Motivated by a real-world problem, we propose a setting where such bias is introduced by providin g pairwise ordinal comparisons between instances, based on the desired factor to be disentangled. For example, a doctor compares pairs of patients based on the level of severity of their illnesses, and the desired factor is a quantitive level of the disease severity. In a real-world application, the pairwise comparisons are usually noisy. Our method, Robust Ordinal VAE (ROVAE), incorporates the noisy pairwise ordinal comparisons in the disentanglement task. We introduce non-negative random variables in ROVAE, such that it can automatically determine whether each pairwise ordinal comparison is trustworthy and ignore the noisy comparisons. Experimental results demonstrate that ROVAE outperforms existing methods and is more robust to noisy pairwise comparisons in both benchmark datasets and a real-world application.
Disentangling data into interpretable and independent factors is critical for controllable generation tasks. With the availability of labeled data, supervision can help enforce the separation of specific factors as expected. However, it is often expe nsive or even impossible to label every single factor to achieve fully-supervised disentanglement. In this paper, we adopt a general setting where all factors that are hard to label or identify are encapsulated as a single unknown factor. Under this setting, we propose a flexible weakly-supervised multi-factor disentanglement framework DisUnknown, which Distills Unknown factors for enabling multi-conditional generation regarding both labeled and unknown factors. Specifically, a two-stage training approach is adopted to first disentangle the unknown factor with an effective and robust training method, and then train the final generator with the proper disentanglement of all labeled factors utilizing the unknown distillation. To demonstrate the generalization capacity and scalability of our method, we evaluate it on multiple benchmark datasets qualitatively and quantitatively and further apply it to various real-world applications on complicated datasets.
Learning rich representation from data is an important task for deep generative models such as variational auto-encoder (VAE). However, by extracting high-level abstractions in the bottom-up inference process, the goal of preserving all factors of va riations for top-down generation is compromised. Motivated by the concept of starting small, we present a strategy to progressively learn independent hierarchical representations from high- to low-levels of abstractions. The model starts with learning the most abstract representation, and then progressively grow the network architecture to introduce new representations at different levels of abstraction. We quantitatively demonstrate the ability of the presented model to improve disentanglement in comparison to existing works on two benchmark data sets using three disentanglement metrics, including a new metric we proposed to complement the previously-presented metric of mutual information gap. We further present both qualitative and quantitative evidence on how the progression of learning improves disentangling of hierarchical representations. By drawing on the respective advantage of hierarchical representation learning and progressive learning, this is to our knowledge the first attempt to improve disentanglement by progressively growing the capacity of VAE to learn hierarchical representations.
Learning interpretable and disentangled representations is a crucial yet challenging task in representation learning. In this work, we focus on semi-supervised disentanglement learning and extend work by Locatello et al. (2019) by introducing another source of supervision that we denote as label replacement. Specifically, during training, we replace the inferred representation associated with a data point with its ground-truth representation whenever it is available. Our extension is theoretically inspired by our proposed general framework of semi-supervised disentanglement learning in the context of VAEs which naturally motivates the supervised terms commonly used in existing semi-supervised VAEs (but not for disentanglement learning). Extensive experiments on synthetic and real datasets demonstrate both quantitatively and qualitatively the ability of our extension to significantly and consistently improve disentanglement with very limited supervision.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا