ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Ordinal VAE: Employing Noisy Pairwise Comparisons for Disentanglement

117   0   0.0 ( 0 )
 نشر من قبل Junxiang Chen
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work by Locatello et al. (2018) has shown that an inductive bias is required to disentangle factors of interest in Variational Autoencoder (VAE). Motivated by a real-world problem, we propose a setting where such bias is introduced by providing pairwise ordinal comparisons between instances, based on the desired factor to be disentangled. For example, a doctor compares pairs of patients based on the level of severity of their illnesses, and the desired factor is a quantitive level of the disease severity. In a real-world application, the pairwise comparisons are usually noisy. Our method, Robust Ordinal VAE (ROVAE), incorporates the noisy pairwise ordinal comparisons in the disentanglement task. We introduce non-negative random variables in ROVAE, such that it can automatically determine whether each pairwise ordinal comparison is trustworthy and ignore the noisy comparisons. Experimental results demonstrate that ROVAE outperforms existing methods and is more robust to noisy pairwise comparisons in both benchmark datasets and a real-world application.

قيم البحث

اقرأ أيضاً

106 - Lei Feng , Senlin Shu , Nan Lu 2020
To alleviate the data requirement for training effective binary classifiers in binary classification, many weakly supervised learning settings have been proposed. Among them, some consider using pairwise but not pointwise labels, when pointwise label s are not accessible due to privacy, confidentiality, or security reasons. However, as a pairwise label denotes whether or not two data points share a pointwise label, it cannot be easily collected if either point is equally likely to be positive or negative. Thus, in this paper, we propose a novel setting called pairwise comparison (Pcomp) classification, where we have only pairs of unlabeled data that we know one is more likely to be positive than the other. Firstly, we give a Pcomp data generation process, derive an unbiased risk estimator (URE) with theoretical guarantee, and further improve URE using correction functions. Secondly, we link Pcomp classification to noisy-label learning to develop a progressive URE and improve it by imposing consistency regularization. Finally, we demonstrate by experiments the effectiveness of our methods, which suggests Pcomp is a valuable and practically useful type of pairwise supervision besides the pairwise label.
We propose a novel parameterized family of Mixed Membership Mallows Models (M4) to account for variability in pairwise comparisons generated by a heterogeneous population of noisy and inconsistent users. M4 models individual preferences as a user-spe cific probabilistic mixture of shared latent Mallows components. Our key algorithmic insight for estimation is to establish a statistical connection between M4 and topic models by viewing pairwise comparisons as words, and users as documents. This key insight leads us to explore Mallows components with a separable structure and leverage recent advances in separable topic discovery. While separability appears to be overly restrictive, we nevertheless show that it is an inevitable outcome of a relatively small number of latent Mallows components in a world of large number of items. We then develop an algorithm based on robust extreme-point identification of convex polygons to learn the reference rankings, and is provably consistent with polynomial sample complexity guarantees. We demonstrate that our new model is empirically competitive with the current state-of-the-art approaches in predicting real-world preferences.
We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data. Traditionally, such a structure is fixed to be a vector space with data variations represented by translation s along individual latent dimensions. We argue this simple structure is suboptimal since it requires the model to learn to discard the properties (e.g. different scales of changes, different levels of abstractness) of data variations, which is an extra work than equivariance learning. Instead, we propose to encode the data variations with groups, a structure not only can equivariantly represent variations, but can also be adaptively optimized to preserve the properties of data variations. Considering it is hard to conduct training on group structures, we focus on Lie groups and adopt a parameterization using Lie algebra. Based on the parameterization, some disentanglement learning constraints are naturally derived. A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning. Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.
372 - Bhanu Garg , Naresh Manwani 2019
The real-world data is often susceptible to label noise, which might constrict the effectiveness of the existing state of the art algorithms for ordinal regression. Existing works on ordinal regression do not take label noise into account. We propose a theoretically grounded approach for class conditional label noise in ordinal regression problems. We present a deep learning implementation of two commonly used loss functions for ordinal regression that is both - 1) robust to label noise, and 2) rank consistent for a good ranking rule. We verify these properties of the algorithm empirically and show robustness to label noise on real data and rank consistency. To the best of our knowledge, this is the first approach for robust ordinal regression models.
Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets. However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality (i .e., having noisy labels). Training on these noisy labeled datasets may adversely deteriorate their generalization performance. Existing methods either rely on complex training stage division or bring too much computation for marginal performance improvement. In this paper, we propose a Temporal Calibrated Regularization (TCR), in which we utilize the original labels and the predictions in the previous epoch together to make DNN inherit the simple pattern it has learned with little overhead. We conduct extensive experiments on various neural network architectures and datasets, and find that it consistently enhances the robustness of DNNs to label noise.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا