ترغب بنشر مسار تعليمي؟ اضغط هنا

DisUnknown: Distilling Unknown Factors for Disentanglement Learning

214   0   0.0 ( 0 )
 نشر من قبل Sitao Xiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Disentangling data into interpretable and independent factors is critical for controllable generation tasks. With the availability of labeled data, supervision can help enforce the separation of specific factors as expected. However, it is often expensive or even impossible to label every single factor to achieve fully-supervised disentanglement. In this paper, we adopt a general setting where all factors that are hard to label or identify are encapsulated as a single unknown factor. Under this setting, we propose a flexible weakly-supervised multi-factor disentanglement framework DisUnknown, which Distills Unknown factors for enabling multi-conditional generation regarding both labeled and unknown factors. Specifically, a two-stage training approach is adopted to first disentangle the unknown factor with an effective and robust training method, and then train the final generator with the proper disentanglement of all labeled factors utilizing the unknown distillation. To demonstrate the generalization capacity and scalability of our method, we evaluate it on multiple benchmark datasets qualitatively and quantitatively and further apply it to various real-world applications on complicated datasets.



قيم البحث

اقرأ أيضاً

We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data. Traditionally, such a structure is fixed to be a vector space with data variations represented by translation s along individual latent dimensions. We argue this simple structure is suboptimal since it requires the model to learn to discard the properties (e.g. different scales of changes, different levels of abstractness) of data variations, which is an extra work than equivariance learning. Instead, we propose to encode the data variations with groups, a structure not only can equivariantly represent variations, but can also be adaptively optimized to preserve the properties of data variations. Considering it is hard to conduct training on group structures, we focus on Lie groups and adopt a parameterization using Lie algebra. Based on the parameterization, some disentanglement learning constraints are naturally derived. A simple model named Commutative Lie Group VAE is introduced to realize the group-based disentanglement learning. Experiments show that our model can effectively learn disentangled representations without supervision, and can achieve state-of-the-art performance without extra constraints.
Learning rich representation from data is an important task for deep generative models such as variational auto-encoder (VAE). However, by extracting high-level abstractions in the bottom-up inference process, the goal of preserving all factors of va riations for top-down generation is compromised. Motivated by the concept of starting small, we present a strategy to progressively learn independent hierarchical representations from high- to low-levels of abstractions. The model starts with learning the most abstract representation, and then progressively grow the network architecture to introduce new representations at different levels of abstraction. We quantitatively demonstrate the ability of the presented model to improve disentanglement in comparison to existing works on two benchmark data sets using three disentanglement metrics, including a new metric we proposed to complement the previously-presented metric of mutual information gap. We further present both qualitative and quantitative evidence on how the progression of learning improves disentangling of hierarchical representations. By drawing on the respective advantage of hierarchical representation learning and progressive learning, this is to our knowledge the first attempt to improve disentanglement by progressively growing the capacity of VAE to learn hierarchical representations.
213 - Jiantao Wu , Lin Wang , Bo Yang 2021
Disentanglement is a highly desirable property of representation owing to its similarity to human understanding and reasoning. Many works achieve disentanglement upon information bottlenecks (IB). Despite their elegant mathematical foundations, the I B branch usually exhibits lower performance. In order to provide an insight into the problem, we develop an annealing test to calculate the information freezing point (IFP), which is a transition state to freeze information into the latent variables. We also explore these clues or inductive biases for separating the entangled factors according to the differences in the IFP distributions. We found the existing approaches suffer from the information diffusion problem, according to which the increased information diffuses in all latent variables. Based on this insight, we propose a novel disentanglement framework, termed the distilling entangled factor (DEFT), to address the information diffusion problem by scaling backward information. DEFT applies a multistage training strategy, including multigroup encoders with different learning rates and piecewise disentanglement pressure, to disentangle the factors stage by stage. We evaluate DEFT on three variants of dSprite and SmallNORB, which show low-variance and high-level disentanglement scores. Furthermore, the experiment under the correlative factors shows incapable of TC-based approaches. DEFT also exhibits a competitive performance in the unsupervised setting.
Reinforcement learning (RL) research focuses on general solutions that can be applied across different domains. This results in methods that RL practitioners can use in almost any domain. However, recent studies often lack the engineering steps (tric ks) which may be needed to effectively use RL, such as reward shaping, curriculum learning, and splitting a large task into smaller chunks. Such tricks are common, if not necessary, to achieve state-of-the-art results and win RL competitions. To ease the engineering efforts, we distill descriptions of tricks from state-of-the-art results and study how well these tricks can improve a standard deep Q-learning agent. The long-term goal of this work is to enable combining proven RL methods with domain-specific tricks by providing a unified software framework and accompanying insights in multiple domains.
Collecting large-scale data with clean labels for supervised training of neural networks is practically challenging. Although noisy labels are usually cheap to acquire, existing methods suffer a lot from label noise. This paper targets at the challen ge of robust training at high label noise regimes. The key insight to achieve this goal is to wisely leverage a small trusted set to estimate exemplar weights and pseudo labels for noisy data in order to reuse them for supervised training. We present a holistic framework to train deep neural networks in a way that is highly invulnerable to label noise. Our method sets the new state of the art on various types of label noise and achieves excellent performance on large-scale datasets with real-world label noise. For instance, on CIFAR100 with a $40%$ uniform noise ratio and only 10 trusted labeled data per class, our method achieves $80.2{pm}0.3%$ classification accuracy, where the error rate is only $1.4%$ higher than a neural network trained without label noise. Moreover, increasing the noise ratio to $80%$, our method still maintains a high accuracy of $75.5{pm}0.2%$, compared to the previous best accuracy $48.2%$. Source code available: https://github.com/google-research/google-research/tree/master/ieg

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا