ﻻ يوجد ملخص باللغة العربية
For which graphs $F$ is there a sparse $F$-counting lemma in $C_4$-free graphs? We are interested in identifying graphs $F$ with the property that, roughly speaking, if $G$ is an $n$-vertex $C_4$-free graph with on the order of $n^{3/2}$ edges, then the density of $F$ in $G$, after a suitable normalization, is approximately at least the density of $F$ in an $epsilon$-regular approximation of $G$. In recent work, motivated by applications in extremal and additive combinatorics, we showed that $C_5$ has this property. Here we construct a family of graphs with the property.
We prove that there exists a function $f(k)=mathcal{O}(k^2 log k)$ such that for every $C_4$-free graph $G$ and every $k in mathbb{N}$, $G$ either contains $k$ vertex-disjoint holes of length at least $6$, or a set $X$ of at most $f(k)$ vertices such
As usual, $P_n$ ($n geq 1$) denotes the path on $n$ vertices, and $C_n$ ($n geq 3$) denotes the cycle on $n$ vertices. For a family $mathcal{H}$ of graphs, we say that a graph $G$ is $mathcal{H}$-free if no induced subgraph of $G$ is isomorphic to an
Let $G$ be a ${C_4, C_5}$-free planar graph with a list assignment $L$. Suppose a preferred color is given for some of the vertices. We prove that if all lists have size at least four, then there exists an $L$-coloring respecting at least a constant fraction of the preferences.
Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices. A graph $G$ is $k$-vertex-critical if $G$ has chromatic number $k$ but every pro
We consider spherical quadrangulations, i.e., graph embeddings in the sphere, in which every face has boundary walk of length 4, and all vertices have degree 3 or 4. Interpreting each degree 4 vertex as a crossing, these embeddings can also be though