ترغب بنشر مسار تعليمي؟ اضغط هنا

The class of $(P_7,C_4,C_5)$-free graphs: decomposition, algorithms, and $chi$-boundedness

68   0   0.0 ( 0 )
 نشر من قبل Irena Penev
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As usual, $P_n$ ($n geq 1$) denotes the path on $n$ vertices, and $C_n$ ($n geq 3$) denotes the cycle on $n$ vertices. For a family $mathcal{H}$ of graphs, we say that a graph $G$ is $mathcal{H}$-free if no induced subgraph of $G$ is isomorphic to any graph in $mathcal{H}$. We present a decomposition theorem for the class of $(P_7,C_4,C_5)$-free graphs; in fact, we give a complete structural characterization of $(P_7,C_4,C_5)$-free graphs that do not admit a clique-cutset. We use this decomposition theorem to show that the class of $(P_7,C_4,C_5)$-free graphs is $chi$-bounded by a linear function (more precisely, every $(P_7,C_4,C_5)$-free graph $G$ satisfies $chi(G) leq frac{3}{2} omega(G)$). We also use the decomposition theorem to construct an $O(n^3)$ algorithm for the minimum coloring problem, an $O(n^2m)$ algorithm for the maximum weight stable set problem, and an $O(n^3)$ algorithm for the maximum weight clique problem for this class, where $n$ denotes the number of vertices and $m$ the number of edges of the input graph.

قيم البحث

اقرأ أيضاً

150 - Donglei Yang , Fan Yang 2020
Let $G$ be a ${C_4, C_5}$-free planar graph with a list assignment $L$. Suppose a preferred color is given for some of the vertices. We prove that if all lists have size at least four, then there exists an $L$-coloring respecting at least a constant fraction of the preferences.
For which graphs $F$ is there a sparse $F$-counting lemma in $C_4$-free graphs? We are interested in identifying graphs $F$ with the property that, roughly speaking, if $G$ is an $n$-vertex $C_4$-free graph with on the order of $n^{3/2}$ edges, then the density of $F$ in $G$, after a suitable normalization, is approximately at least the density of $F$ in an $epsilon$-regular approximation of $G$. In recent work, motivated by applications in extremal and additive combinatorics, we showed that $C_5$ has this property. Here we construct a family of graphs with the property.
We introduce a new approach and prove that the maximum number of triangles in a $C_5$-free graph on $n$ vertices is at most $$(1 + o(1)) frac{1}{3 sqrt 2} n^{3/2}.$$ We also show a connection to $r$-uniform hypergraphs without (Berge) cycles of lengt h less than six, and estimate their maximum possible size.
In 1967, ErdH{o}s asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of ErdH{o}s and Hajnal together with Shearers classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows tha t $f(n)$ is at most $(2 sqrt{2} + o(1)) sqrt{n/log n}$. We improve this bound by a factor $sqrt{2}$, as well as obtaining an analogous bound on the list chromatic number which is tight up to a constant factor. A bound in terms of the number of edges that is similarly tight follows, and these results confirm a conjecture of Cames van Batenburg, de Joannis de Verclos, Kang, and Pirot.
Given two graphs $H_1$ and $H_2$, a graph $G$ is $(H_1,H_2)$-free if it contains no induced subgraph isomorphic to $H_1$ or $H_2$. Let $P_t$ be the path on $t$ vertices and $K_t$ be the complete graph on $t$ vertices. The diamond is the graph obtaine d from $K_4$ by removing an edge. In this paper we show that every ($P_6$, diamond)-free graph $G$ satisfies $chi(G)le omega(G)+3$, where $chi(G)$ and $omega(G)$ are the chromatic number and clique number of $G$, respectively. Our bound is attained by the complement of the famous 27-vertex Schlafli graph. Our result unifies previously known results on the existence of linear $chi$-binding functions for several graph classes. Our proof is based on a reduction via the Strong Perfect Graph Theorem to imperfect ($P_6$, diamond)-free graphs, a careful analysis of the structure of those graphs, and a computer search that relies on a well-known characterization of 3-colourable $(P_6,K_3)$-free graphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا