ﻻ يوجد ملخص باللغة العربية
We consider spherical quadrangulations, i.e., graph embeddings in the sphere, in which every face has boundary walk of length 4, and all vertices have degree 3 or 4. Interpreting each degree 4 vertex as a crossing, these embeddings can also be thought of as transversal immersions of cubic graphs which we refer to as the extracted graphs. We also consider quadrangulations of the disk in which interior vertices have degree 3 or 4 and boundary vertices have degree 2 or 3. First, we classify all such quadrangulations of the disk. Then, we provide four methods for constructing spherical quadrangulations, two of which use quadrangulations of the disk as input. Two of these methods provide one-parameter families of quadrangulations, for which we prove that the sequence of isomorphism types of extracted graphs is periodic. We close with a description of computer computations which yielded spherical quadrangulations for all but three cubic multigraphs on eight vertices.
For which graphs $F$ is there a sparse $F$-counting lemma in $C_4$-free graphs? We are interested in identifying graphs $F$ with the property that, roughly speaking, if $G$ is an $n$-vertex $C_4$-free graph with on the order of $n^{3/2}$ edges, then
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou
A graph is apex if there is a vertex whose deletion makes the graph planar, and doublecross if it can be drawn in the plane with only two crossings, both incident with the infinite region in the natural sense. In 1966, Tutte conjectured that every tw
In this article we associate a combinatorial differential graded algebra to a cubic planar graph G. This algebra is defined combinatorially by counting binary sequences, which we introduce, and several explicit computations are provided. In addition,
An (r,alpha)-bounded excess flow ((r,alpha)-flow) in an orientation of a graph G=(V,E) is an assignment of a real flow value between 1 and r-1 to every edge. Rather than 0 as in an actual flow, some flow excess, which does not exceed alpha may accumu