ﻻ يوجد ملخص باللغة العربية
We prove that there exists a function $f(k)=mathcal{O}(k^2 log k)$ such that for every $C_4$-free graph $G$ and every $k in mathbb{N}$, $G$ either contains $k$ vertex-disjoint holes of length at least $6$, or a set $X$ of at most $f(k)$ vertices such that $G-X$ has no hole of length at least $6$. This answers a question of Kim and Kwon [ErdH{o}s-Posa property of chordless cycles and its applications. JCTB 2020].
Robertson and Seymour proved that the family of all graphs containing a fixed graph $H$ as a minor has the ErdH{o}s-Posa property if and only if $H$ is planar. We show that this is no longer true for the edge version of the ErdH{o}s-Posa property, an
A chordless cycle, or equivalently a hole, in a graph $G$ is an induced subgraph of $G$ which is a cycle of length at least $4$. We prove that the ErdH{o}s-Posa property holds for chordless cycles, which resolves the major open question concerning th
We prove that there exists a function $f:mathbb{N}rightarrow mathbb{R}$ such that every digraph $G$ contains either $k$ directed odd cycles where every vertex of $G$ is contained in at most two of them, or a vertex set $X$ of size at most $f(k)$ hitt
A hole in a graph is an induced cycle of length at least $4$. Let $sge2$ and $tge2$ be integers. A graph $G$ is $(s,t)$-splittable if $V(G)$ can be partitioned into two sets $S$ and $T$ such that $chi(G[S ]) ge s$ and $chi(G[T ]) ge t$. The well-know
A graph is $P_8$-free if it contains no induced subgraph isomorphic to the path $P_8$ on eight vertices. In 1995, ErdH{o}s and Gy{a}rf{a}s conjectured that every graph of minimum degree at least three contains a cycle whose length is a power of two.