ﻻ يوجد ملخص باللغة العربية
Vortex-induced vibration (VIV) exists widely in natural and industrial fields. The main approaches for solving VIV problems are numerical simulations and experimental methods. However, experiment methods are difficult to obtain the whole flow field information and also high-cost while numerical simulation is extraordinary time-consuming and limited in low Reynolds number and simple geometric configuration. In addition, numerical simulations are difficult to handle the moving mesh technique. In this paper, physics informed neural network (PINN) is proposed to solve the VIV and wake-induced vibration (WIV) of cylinder with high Reynolds number. Compared to tradition data-driven neural network, the Reynolds Average Navier-Stokes (RANS) equation, by implanting an additional turbulent eddy viscosity, coupled with structures dynamic motion equation are also embedded into the loss function. Training and validation data is obtained by computational fluid dynamic (CFD) technique. Three scenarios are proposed to validate the performance of PINN in solving VIV and WIV of cylinders. In the first place, the stiffness parameter and damping parameter are calculated via limited force data and displacement data; secondly, the flow field and lifting force/drag force are inferred by scattered velocity information; eventually, the displacement can be directly predicted only through lifting forces and drag forces based on LSTM. Results demonstrate that,compared with traditional neural network, PINN method is more effective in inferring and re-constructing the unknown parameters and flow field with high Reynolds number under VIV and WIV circumstances.
Numerical simulation results in recent years show that vortex-induced vibration (VIV) can occur at a subcritical Reynolds number. And the VIV has been observed numerically at Reynolds numbers as low as Re = 20. The current study presents an experimen
An essential ingredient of turbulent flows is the vortex stretching mechanism, which emanates from the non-linear interaction of vorticity and strain-rate tensor and leads to formation of extreme events. We analyze the statistical correlations betwee
Unsteady laminar vortex shedding over a circular cylinder is predicted using a deep learning technique, a generative adversarial network (GAN), with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equa
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor
The interaction between turbulent axisymmetric wakes plays an important role in many industrial applications, notably in the modelling of wind farms. While the non-equilibrium high Reynolds number scalings present in the wake of axisymmetric plates h