ﻻ يوجد ملخص باللغة العربية
Intense fluctuations of energy dissipation rate in turbulent flows result from the self-amplification of strain rate via a quadratic nonlinearity, with contributions from vorticity (via the vortex stretching mechanism) and the pressure Hessian tensor, which we analyze here using direct numerical simulations of isotropic turbulence in periodic domains of up to $12288^3$ grid points, and Taylor-scale Reynolds numbers in the range $140-1300$. We extract the statistics of various terms involved in amplification of strain and additionally condition them on the magnitude of strain. We find that strain is overall self-amplified by the quadratic nonlinearity, and depleted via vortex stretching; whereas pressure Hessian acts to redistribute strain fluctuations towards the mean-field and thus depleting intense strain. Analyzing the intense fluctuations of strain in terms of its eigenvalues reveals that the net amplification is solely produced by the third eigenvalue, resulting in strong compressive action. In contrast, the self-amplification terms acts to deplete the other two eigenvalues, whereas vortex stretching acts to amplify them, both effects canceling each other almost perfectly. The effect of the pressure Hessian for each eigenvalue is qualitatively similar to that of vortex stretching, but significantly weaker in magnitude. Our results conform with the familiar notion that intense strain is organized in sheet-like structures, which are in the vicinity of, but never overlap with regions of intense vorticity due to fundamental differences in their amplifying mechanisms.
An essential ingredient of turbulent flows is the vortex stretching mechanism, which emanates from the non-linear interaction of vorticity and strain-rate tensor and leads to formation of extreme events. We analyze the statistical correlations betwee
Using exact relations between velocity structure functions (Hill, Hill and Boratav, and Yakhot) and neglecting pressure contributions in a first approximation, we obtain a closed system and derive simple order-dependent rescaling relationships betwee
Inertial particle data from three-dimensional direct numerical simulations of particle-laden homogeneous isotropic turbulence at high Reynolds number are analyzed using Voronoi tessellation of the particle positions, considering different Stokes numb
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, a
Multiscale statistical analyses of inertial particle distributions are presented to investigate the statistical signature of clustering and void regions in particle-laden incompressible isotropic turbulence. Three-dimensional direct numerical simulat