ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction of two high Reynolds number axisymmetric turbulent wakes

106   0   0.0 ( 0 )
 نشر من قبل Martin Obligado
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interaction between turbulent axisymmetric wakes plays an important role in many industrial applications, notably in the modelling of wind farms. While the non-equilibrium high Reynolds number scalings present in the wake of axisymmetric plates has been shown to modify the averaged streamwise scalings of individual wakes, little attention has been paid to their consequences in terms of wake interactions. We propose an experimental setup that tests the presence of non-equilibrium turbulence using the streamwise variation of velocity fluctuations between two bluff bodies facing a laminar flow. We have studied two different sets of plates (one with regular and another with irregular peripheries) with hot-wire anemometry in a wind tunnel. By acquiring streamwise profiles for different plate separations and identifying the wake interaction length for each separation it is possible to show that the interaction between them is consistent with non-equilibrium scalings. This work also generalises previous studies concerned with the interaction of plane wakes to include axisymmetric wakes. We find that a simple mathematical expression for the wake interaction length based on non-equilibrium turbulence scalings can be used to collapse the streamwise developments of the second, third and fourth moments of the streamwise fluctuating velocity.

قيم البحث

اقرأ أيضاً

A new approach to turbulence simulation, based on a combination of large-eddy simulation (LES) for the whole flow and an array of non-space-filling quasi-direct numerical simulations (QDNS), which sample the response of near-wall turbulence to large- scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse-grid LES, with the equivalent of wall functions supplied by the near-wall sampled QDNS. Two cases are tested, at friction Reynolds number Re$_tau$=4200 and 20,000. The total grid node count for the first case is less than half a million and less than two million for the second case, with the calculations only requiring a desktop computer. A good agreement with published DNS is found at Re$_tau$=4200, both in terms of the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near-wall turbulence levels due to a modulation of near-wall streaks by large-scale structures. The trend continues at Re$_tau$=20,000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES-QDNS coupling strategy and sub-grid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.
Emulsions are omnipresent in the food industry, health care, and chemical synthesis. In this Letter the dynamics of meta-stable oil-water emulsions in highly turbulent ($10^{11}leqtext{Ta}leq 3times 10^{13}$) Taylor--Couette flow, far from equilibriu m, is investigated. By varying the oil-in-water void fraction, catastrophic phase inversion between oil-in-water and water-in-oil emulsions can be triggered, changing the morphology, including droplet sizes, and rheological properties of the mixture, dramatically. The manifestation of these different states is exemplified by combining global torque measurements and local in-situ laser induced fluorescence (LIF) microscopy imaging. Despite the turbulent state of the flow and the dynamic equilibrium of the oil-water mixture, the global torque response of the system is found to be as if the fluid were Newtonian, and the effective viscosity of the mixture was found to be several times bigger or smaller than either of its constituents.
Four well-resolved LESs of the turbulent boundary layers around a NACA4412 wing section, with Rec ranging from 100,000 to 1,000,000, were performed at 5 degree angle of attack. By comparing the turbulence statistics with those in ZPG TBLs at approxim ately matching Re_tau, we find that the effect of the adverse pressure gradient (APG) is more intense at lower Reynolds numbers. This indicates that at low Re the outer region of the TBL becomes more energized through the wall-normal convection associated to the APG. This is also reflected in the fact that the inner-scaled wall-normal velocity is larger on the suction side at lower Reynolds numbers. In particular, the wing cases at Rec = 200,000 and 400,000 exhibit wall-normal velocities 40% and 20% larger, respectively, than the case with Rec = 1,000,000. Consequently, the outer-region energizing mechanism associated to the APG is complementary to that present in high-Re TBLs.
The modified Townsend-Perry attached eddy model of Vassilicos et al (2015) combines the outer peak/plateau behaviour of rms streamwise turbulence velocity profiles and the Townsend-Perry log-decay of these profiles at higher distances from the wall. This model was validated by these authors for high Reynolds number tur- bulent pipe flow data and is shown here to describe equally well and with about the same parameter values turbulent boundary layer flow data from four different facilities and a wide range of Reynolds numbers. The model has predictive value as, when extrapolated to the extremely high Reynolds numbers of the SLTEST data obtained at the Great Salt Lake Desert atmospheric test facility, it matches these data quite well.
An experiment was performed using SPIV in the LMFL boundary layer facility to determine all the derivative moments needed to estimate the average dissipation rate of the turbulence kinetic energy, $varepsilon = 2 u langle s_{ij}s_{ij} rangle$ where $s_{ij}$ is the fluctuating strain-rate and $langle~rangle$ denotes ensemble averages. Also measured were all the moments of the full average deformation rate tensor, as well as all of the first, second and third fluctuating velocity moments except those involving pressure. The Reynolds number was $Re_theta = 7500$ or $Re_tau = 2300$. The results are presented in three separate papers. This first paper (Part I) presents the measured average dissipation, $varepsilon$ and the derivative moments comprising it. It compares the results to the earlier measurements of cite{balint91,honkan97} at lower Reynolds numbers and a new results from a plane channel flow DNS at comparable Reynolds number. It then uses the results to extend and evaluate the theoretical predictions of cite{george97b,wosnik00} for all quantities in the overlap region. Of special interest is the prediction that $varepsilon^+ propto {y^+}^{-1}$ for streamwise homogeneous flows and a nearly indistinguishable power law, $varepsilon propto {y^+}^{gamma-1}$, for boundary layers. In spite of the modest Reynolds number, the predictions seem to be correct. It also predicts and confirms that the transport moment contribution to the energy balance in the overlap region, $partial langle - pv /rho - q^2 v/2 rangle/ partial y$ behaves similarly. An immediate consequence is that the usual eddy viscosity model for these terms cannot be correct. The second paper, Part II, examines in detail the statistical character of the velocity derivatives. The details of the SPIV methodology is in Part III, since it will primarily be of interest to experimentalists.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا