ﻻ يوجد ملخص باللغة العربية
Can Transformer perform $2mathrm{D}$ object-level recognition from a pure sequence-to-sequence perspective with minimal knowledge about the $2mathrm{D}$ spatial structure? To answer this question, we present You Only Look at One Sequence (YOLOS), a series of object detection models based on the naive Vision Transformer with the fewest possible modifications as well as inductive biases. We find that YOLOS pre-trained on the mid-sized ImageNet-$1k$ dataset only can already achieve competitive object detection performance on COCO, textit{e.g.}, YOLOS-Base directly adopted from BERT-Base can achieve $42.0$ box AP. We also discuss the impacts as well as limitations of current pre-train schemes and model scaling strategies for Transformer in vision through object detection. Code and model weights are available at url{https://github.com/hustvl/YOLOS}.
This paper revisits feature pyramids networks (FPN) for one-stage detectors and points out that the success of FPN is due to its divide-and-conquer solution to the optimization problem in object detection rather than multi-scale feature fusion. From
Object detection remains an active area of research in the field of computer vision, and considerable advances and successes has been achieved in this area through the design of deep convolutional neural networks for tackling object detection. Despit
DETR is a recently proposed Transformer-based method which views object detection as a set prediction problem and achieves state-of-the-art performance but demands extra-long training time to converge. In this paper, we investigate the causes of the
Very recently, Window-based Transformers, which computed self-attention within non-overlapping local windows, demonstrated promising results on image classification, semantic segmentation, and object detection. However, less study has been devoted to
We propose 3DETR, an end-to-end Transformer based object detection model for 3D point clouds. Compared to existing detection methods that employ a number of 3D-specific inductive biases, 3DETR requires minimal modifications to the vanilla Transformer