ﻻ يوجد ملخص باللغة العربية
Very recently, Window-based Transformers, which computed self-attention within non-overlapping local windows, demonstrated promising results on image classification, semantic segmentation, and object detection. However, less study has been devoted to the cross-window connection which is the key element to improve the representation ability. In this work, we revisit the spatial shuffle as an efficient way to build connections among windows. As a result, we propose a new vision transformer, named Shuffle Transformer, which is highly efficient and easy to implement by modifying two lines of code. Furthermore, the depth-wise convolution is introduced to complement the spatial shuffle for enhancing neighbor-window connections. The proposed architectures achieve excellent performance on a wide range of visual tasks including image-level classification, object detection, and semantic segmentation. Code will be released for reproduction.
This is a short technical report introducing the solution of the Team TCParser for Short-video Face Parsing Track of The 3rd Person in Context (PIC) Workshop and Challenge at CVPR 2021. In this paper, we introduce a strong backbone which is cross-win
Relative position encoding (RPE) is important for transformer to capture sequence ordering of input tokens. General efficacy has been proven in natural language processing. However, in computer vision, its efficacy is not well studied and even remain
Recently, transformers have shown great superiority in solving computer vision tasks by modeling images as a sequence of manually-split patches with self-attention mechanism. However, current architectures of vision transformers (ViTs) are simply inh
Recent advances on Vision Transformer (ViT) and its improved variants have shown that self-attention-based networks surpass traditional Convolutional Neural Networks (CNNs) in most vision tasks. However, existing ViTs focus on the standard accuracy a
The Shuffle Test is the most common task to evaluate whether NLP models can measure coherence in text. Most recent work uses direct supervision on the task; we show that by simply finetuning a RoBERTa model, we can achieve a near perfect accuracy of