ترغب بنشر مسار تعليمي؟ اضغط هنا

Sample Selection with Uncertainty of Losses for Learning with Noisy Labels

105   0   0.0 ( 0 )
 نشر من قبل Tongliang Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In learning with noisy labels, the sample selection approach is very popular, which regards small-loss data as correctly labeled during training. However, losses are generated on-the-fly based on the model being trained with noisy labels, and thus large-loss data are likely but not certainly to be incorrect. There are actually two possibilities of a large-loss data point: (a) it is mislabeled, and then its loss decreases slower than other data, since deep neural networks learn patterns first; (b) it belongs to an underrepresented group of data and has not been selected yet. In this paper, we incorporate the uncertainty of losses by adopting interval estimation instead of point estimation of losses, where lower bounds of the confidence intervals of losses derived from distribution-free concentration inequalities, but not losses themselves, are used for sample selection. In this way, we also give large-loss but less selected data a try; then, we can better distinguish between the cases (a) and (b) by seeing if the losses effectively decrease with the uncertainty after the try. As a result, we can better explore underrepresented data that are correctly labeled but seem to be mislabeled at first glance. Experiments demonstrate that the proposed method is superior to baselines and robust to a broad range of label noise types.



قيم البحث

اقرأ أيضاً

Deep Learning systems have shown tremendous accuracy in image classification, at the cost of big image datasets. Collecting such amounts of data can lead to labelling errors in the training set. Indexing multimedia content for retrieval, classificati on or recommendation can involve tagging or classification based on multiple criteria. In our case, we train face recognition systems for actors identification with a closed set of identities while being exposed to a significant number of perturbators (actors unknown to our database). Face classifiers are known to be sensitive to label noise. We review recent works on how to manage noisy annotations when training deep learning classifiers, independently from our interest in face recognition.
Learning with curriculum has shown great effectiveness in tasks where the data contains noisy (corrupted) labels, since the curriculum can be used to re-weight or filter out noisy samples via proper design. However, obtaining curriculum from a learne r itself without additional supervision or feedback deteriorates the effectiveness due to sample selection bias. Therefore, methods that involve two or more networks have been recently proposed to mitigate such bias. Nevertheless, these studies utilize the collaboration between networks in a way that either emphasizes the disagreement or focuses on the agreement while ignores the other. In this paper, we study the underlying mechanism of how disagreement and agreement between networks can help reduce the noise in gradients and develop a novel framework called Robust Collaborative Learning (RCL) that leverages both disagreement and agreement among networks. We demonstrate the effectiveness of RCL on both synthetic benchmark image data and real-world large-scale bioinformatics data.
220 - Jun Shu , Qian Zhao , Keyu Chen 2020
Robust loss minimization is an important strategy for handling robust learning issue on noisy labels. Current robust loss functions, however, inevitably involve hyperparameter(s) to be tuned, manually or heuristically through cross validation, which makes them fairly hard to be generally applied in practice. Besides, the non-convexity brought by the loss as well as the complicated network architecture makes it easily trapped into an unexpected solution with poor generalization capability. To address above issues, we propose a meta-learning method capable of adaptively learning hyperparameter in robust loss functions. Specifically, through mutual amelioration between robust loss hyperparameter and network parameters in our method, both of them can be simultaneously finely learned and coordinated to attain solutions with good generalization capability. Four kinds of SOTA robust loss functions are attempted to be integrated into our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its accuracy and generalization performance, as compared with conventional hyperparameter tuning strategy, even with carefully tuned hyperparameters.
Robust loss functions are essential for training deep neural networks with better generalization power in the presence of noisy labels. Symmetric loss functions are confirmed to be robust to label noise. However, the symmetric condition is overly res trictive. In this work, we propose a new class of loss functions, namely textit{asymmetric loss functions}, which are robust to learning with noisy labels for various types of noise. We investigate general theoretical properties of asymmetric loss functions, including classification calibration, excess risk bound, and noise tolerance. Meanwhile, we introduce the asymmetry ratio to measure the asymmetry of a loss function. The empirical results show that a higher ratio would provide better noise tolerance. Moreover, we modify several commonly-used loss functions and establish the necessary and sufficient conditions for them to be asymmetric. Experimental results on benchmark datasets demonstrate that asymmetric loss functions can outperform state-of-the-art methods. The code is available at href{https://github.com/hitcszx/ALFs}{https://github.com/hitcszx/ALFs}
We study the robustness to symmetric label noise of GNNs training procedures. By combining the nonlinear neural message-passing models (e.g. Graph Isomorphism Networks, GraphSAGE, etc.) with loss correction methods, we present a noise-tolerant approa ch for the graph classification task. Our experiments show that test accuracy can be improved under the artificial symmetric noisy setting.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا