ترغب بنشر مسار تعليمي؟ اضغط هنا

Junta Distance Approximation with Sub-Exponential Queries

90   0   0.0 ( 0 )
 نشر من قبل Michael Whitmeyer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the emph{tolerant testing} of juntas. Given black-box access to a Boolean function $f:{pm1}^{n} to {pm1}$, we give a $poly(k, frac{1}{varepsilon})$ query algorithm that distinguishes between functions that are $gamma$-close to $k$-juntas and $(gamma+varepsilon)$-far from $k$-juntas, where $k = O(frac{k}{varepsilon^2})$. In the non-relaxed setting, we extend our ideas to give a $2^{tilde{O}(sqrt{k/varepsilon})}$ (adaptive) query algorithm that distinguishes between functions that are $gamma$-close to $k$-juntas and $(gamma+varepsilon)$-far from $k$-juntas. To the best of our knowledge, this is the first subexponential-in-$k$ query algorithm for approximating the distance of $f$ to being a $k$-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in $k$). Our techniques are Fourier analytical and make use of the notion of normalized influences that was introduced by Talagrand [AoP, 1994].



قيم البحث

اقرأ أيضاً

Suppose that we are given an arbitrary graph $G=(V, E)$ and know that each edge in $E$ is going to be realized independently with some probability $p$. The goal in the stochastic matching problem is to pick a sparse subgraph $Q$ of $G$ such that the realized edges in $Q$, in expectation, include a matching that is approximately as large as the maximum matching among the realized edges of $G$. The maximum degree of $Q$ can depend on $p$, but not on the size of $G$. This problem has been subject to extensive studies over the years and the approximation factor has been improved from $0.5$ to $0.5001$ to $0.6568$ and eventually to $2/3$. In this work, we analyze a natural sampling-based algorithm and show that it can obtain all the way up to $(1-epsilon)$ approximation, for any constant $epsilon > 0$. A key and of possible independent interest component of our analysis is an algorithm that constructs a matching on a stochastic graph, which among some other important properties, guarantees that each vertex is matched independently from the vertices that are sufficiently far. This allows us to bypass a previously known barrier towards achieving $(1-epsilon)$ approximation based on existence of dense Ruzsa-Szemeredi graphs.
We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t he first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
We develop a polynomial time $Omegaleft ( frac 1R log R right)$ approximate algorithm for Max 2CSP-$R$, the problem where we are given a collection of constraints, each involving two variables, where each variable ranges over a set of size $R$, and w e want to find an assignment to the variables that maximizes the number of satisfied constraints. Assuming the Unique Games Conjecture, this is the best possible approximation up to constant factors. Previously, a $1/R$-approximate algorithm was known, based on linear programming. Our algorithm is based on semidefinite programming (SDP) and on a novel rounding technique. The SDP that we use has an almost-matching integrality gap.
MAX CLIQUE problem (MCP) is an NPO problem, which asks to find the largest complete sub-graph in a graph $G, G = (V, E)$ (directed or undirected). MCP is well known to be $NP-Hard$ to approximate in polynomial time with an approximation ratio of $1 + epsilon$, for every $epsilon > 0$ [9] (and even a polynomial time approximation algorithm with a ratio $n^{1 - epsilon}$ has been conjectured to be non-existent [2] for MCP). Up to this date, the best known approximation ratio for MCP of a polynomial time algorithm is $O(n(log_2(log_2(n)))^2 / (log_2(n))^3)$ given by Feige [1]. In this paper, we show that MCP can be approximated with a constant factor in polynomial time through approximation ratio preserving reductions from MCP to MAX DNF and from MAX DNF to MIN SAT. A 2-approximation algorithm for MIN SAT was presented in [6]. An approximation ratio preserving reduction from MIN SAT to min vertex cover improves the approximation ratio to $2 - Theta(1/ sqrt{n})$ [10]. Hence we prove false the infamous conjecture, which argues that there cannot be a polynomial time algorithm for MCP with an approximation ratio of any constant factor.
A number of recent works have studied algorithms for entrywise $ell_p$-low rank approximation, namely, algorithms which given an $n times d$ matrix $A$ (with $n geq d$), output a rank-$k$ matrix $B$ minimizing $|A-B|_p^p=sum_{i,j}|A_{i,j}-B_{i,j}|^p$ when $p > 0$; and $|A-B|_0=sum_{i,j}[A_{i,j} eq B_{i,j}]$ for $p=0$. On the algorithmic side, for $p in (0,2)$, we give the first $(1+epsilon)$-approximation algorithm running in time $n^{text{poly}(k/epsilon)}$. Further, for $p = 0$, we give the first almost-linear time approximation scheme for what we call the Generalized Binary $ell_0$-Rank-$k$ problem. Our algorithm computes $(1+epsilon)$-approximation in time $(1/epsilon)^{2^{O(k)}/epsilon^{2}} cdot nd^{1+o(1)}$. On the hardness of approximation side, for $p in (1,2)$, assuming the Small Set Expansion Hypothesis and the Exponential Time Hypothesis (ETH), we show that there exists $delta := delta(alpha) > 0$ such that the entrywise $ell_p$-Rank-$k$ problem has no $alpha$-approximation algorithm running in time $2^{k^{delta}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا