ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximation of non-boolean 2CSP

132   0   0.0 ( 0 )
 نشر من قبل Alexandra Kolla
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a polynomial time $Omegaleft ( frac 1R log R right)$ approximate algorithm for Max 2CSP-$R$, the problem where we are given a collection of constraints, each involving two variables, where each variable ranges over a set of size $R$, and we want to find an assignment to the variables that maximizes the number of satisfied constraints. Assuming the Unique Games Conjecture, this is the best possible approximation up to constant factors. Previously, a $1/R$-approximate algorithm was known, based on linear programming. Our algorithm is based on semidefinite programming (SDP) and on a novel rounding technique. The SDP that we use has an almost-matching integrality gap.



قيم البحث

اقرأ أيضاً

We provide a randomized linear time approximation scheme for a generic problem about clustering of binary vectors subject to additional constrains. The new constrained clustering problem encompasses a number of problems and by solving it, we obtain t he first linear time-approximation schemes for a number of well-studied fundamental problems concerning clustering of binary vectors and low-rank approximation of binary matrices. Among the problems solvable by our approach are textsc{Low GF(2)-Rank Approximation}, textsc{Low Boolean-Rank Approximation}, and vario
MAX CLIQUE problem (MCP) is an NPO problem, which asks to find the largest complete sub-graph in a graph $G, G = (V, E)$ (directed or undirected). MCP is well known to be $NP-Hard$ to approximate in polynomial time with an approximation ratio of $1 + epsilon$, for every $epsilon > 0$ [9] (and even a polynomial time approximation algorithm with a ratio $n^{1 - epsilon}$ has been conjectured to be non-existent [2] for MCP). Up to this date, the best known approximation ratio for MCP of a polynomial time algorithm is $O(n(log_2(log_2(n)))^2 / (log_2(n))^3)$ given by Feige [1]. In this paper, we show that MCP can be approximated with a constant factor in polynomial time through approximation ratio preserving reductions from MCP to MAX DNF and from MAX DNF to MIN SAT. A 2-approximation algorithm for MIN SAT was presented in [6]. An approximation ratio preserving reduction from MIN SAT to min vertex cover improves the approximation ratio to $2 - Theta(1/ sqrt{n})$ [10]. Hence we prove false the infamous conjecture, which argues that there cannot be a polynomial time algorithm for MCP with an approximation ratio of any constant factor.
An ordering constraint satisfaction problem (OCSP) is given by a positive integer $k$ and a constraint predicate $Pi$ mapping permutations on ${1,ldots,k}$ to ${0,1}$. Given an instance of OCSP$(Pi)$ on $n$ variables and $m$ constraints, the goal is to find an ordering of the $n$ variables that maximizes the number of constraints that are satisfied, where a constraint specifies a sequence of $k$ distinct variables and the constraint is satisfied by an ordering on the $n$ variables if the ordering induced on the $k$ variables in the constraint satisfies $Pi$. OCSPs capture natural problems including Maximum acyclic subgraph (MAS) and Betweenness. In this work we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, where an instance is presented as a stream of constraints. We show that for every $Pi$, OCSP$(Pi)$ is approximation-resistant to $o(n)$-space streaming algorithms. This space bound is tight up to polylogarithmic factors. In the case of MAS our result shows that for every $epsilon>0$, MAS is not $1/2+epsilon$-approximable in $o(n)$ space. The previous best inapproximability result only ruled out a $3/4$-approximation in $o(sqrt n)$ space. Our results build on recent works of Chou, Golovnev, Sudan, Velingker, and Velusamy who show tight, linear-space inapproximability results for a broad class of (non-ordering) constraint satisfaction problems over arbitrary (finite) alphabets. We design a family of appropriate CSPs (one for every $q$) from any given OCSP, and apply their work to this family of CSPs. We show that the hard instances from this earlier work have a particular small-set expansion property. By exploiting this combinatorial property, in combination with the hardness results of the resulting families of CSPs, we give optimal inapproximability results for all OCSPs.
167 - Mitali Bafna , Nikhil Vyas 2021
The problem of solving linear systems is one of the most fundamental problems in computer science, where given a satisfiable linear system $(A,b)$, for $A in mathbb{R}^{n times n}$ and $b in mathbb{R}^n$, we wish to find a vector $x in mathbb{R}^n$ s uch that $Ax = b$. The current best algorithms for solving dense linear systems reduce the problem to matrix multiplication, and run in time $O(n^{omega})$. We consider the problem of finding $varepsilon$-approximate solutions to linear systems with respect to the $L_2$-norm, that is, given a satisfiable linear system $(A in mathbb{R}^{n times n}, b in mathbb{R}^n)$, find an $x in mathbb{R}^n$ such that $||Ax - b||_2 leq varepsilon||b||_2$. Our main result is a fine-grained reduction from computing the rank of a matrix to finding $varepsilon$-approximate solutions to linear systems. In particular, if the best known $O(n^omega)$ time algorithm for computing the rank of $n times O(n)$ matrices is optimal (which we conjecture is true), then finding an $varepsilon$-approximate solution to a dense linear system also requires $tilde{Omega}(n^{omega})$ time, even for $varepsilon$ as large as $(1 - 1/text{poly}(n))$. We also prove (under some modified conjectures for the rank-finding problem) optimal hardness of approximation for sparse linear systems, linear systems over positive semidefinite matrices, well-conditioned linear systems, and approximately solving linear systems with respect to the $L_p$-norm, for $p geq 1$. At the heart of our results is a novel reduction from the rank problem to a decision version of the approximate linear systems problem. This reduction preserves properties such as matrix sparsity and bit complexity.
The minimum linear ordering problem (MLOP) seeks to minimize an aggregated cost $f(cdot)$ due to an ordering $sigma$ of the items (say $[n]$), i.e., $min_{sigma} sum_{iin [n]} f(E_{i,sigma})$, where $E_{i,sigma}$ is the set of items that are mapped b y $sigma$ to indices at most $i$. This problem has been studied in the literature for various special cases of the cost function $f$, and in a general setting for a submodular or supermodular cost $f$ [ITT2012]. Though MLOP was known to be NP-hard for general submodular functions, it was unknown whether the special case of graphic matroid MLOP (with $f$ being the matroid rank function of a graph) was polynomial-time solvable. Following this motivation, we explore related classes of linear ordering problems, including symmetric submodular MLOP, minimum latency vertex cover, and minimum sum vertex cover. We show that the most special cases of our problem, graphic matroid MLOP and minimum latency vertex cover, are both NP-hard. We further expand the toolkit for approximating MLOP variants: using the theory of principal partitions, we show a $2-frac{1+ell_{f}}{1+|E|}$ approximation to monotone submodular MLOP, where $ell_{f}=frac{f(E)}{max_{xin E}f({x})}$ satisfies $1 leq ell_f leq |E|$. Thus our result improves upon the best known bound of $2-frac{2}{1+|E|}$ by Iwata, Tetali, and Tripathi [ITT2012]. This leads to a $2-frac{1+r(E)}{1+|E|}$ approximation for the matroid MLOP, corresponding to the case when $r$ is the rank function of a given matroid. Finally, we show that MLVC can be $4/3$ approximated, matching the integrality gap of its vanilla LP relaxation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا