ﻻ يوجد ملخص باللغة العربية
Abnormality detection is essential to the performance of safety-critical and latency-constrained systems. However, as systems are becoming increasingly complicated with a large quantity of heterogeneous data, conventional statistical change point detection methods are becoming less effective and efficient. Although Deep Learning (DL) and Deep Neural Networks (DNNs) are increasingly employed to handle heterogeneous data, they still lack theoretic assurable performance and explainability. This paper integrates zero-bias DNN and Quickest Event Detection algorithms to provide a holistic framework for quick and reliable detection of both abnormalities and time-dependent abnormal events in the Internet of Things (IoT). We first use the zero-bias dense layer to increase the explainability of DNN. We provide a solution to convert zero-bias DNN classifiers into performance assured binary abnormality detectors. Using the converted abnormality detector, we then present a sequential quickest detection scheme that provides the theoretically assured lowest abnormal event detection delay under false alarm constraints. Finally, we demonstrate the effectiveness of the framework using both massive signal records from real-world aviation communication systems and simulated data. Code and data of our work is available at url{https://github.com/pcwhy/AbnormalityDetectionInZbDNN}
As network size continues to grow exponentially, there has been a proportionate increase in the number of nodes in the corresponding network. With the advent of Internet of things (IOT), it is assumed that many more devices will be connected to the e
We present DeepIA, a deep neural network (DNN) framework for enabling fast and reliable initial access for AI-driven beyond 5G and 6G millimeter (mmWave) networks. DeepIA reduces the beam sweep time compared to a conventional exhaustive search-based
Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures. In this work, we formulate a problem of autonomous maintenance in IoT networks as a Partially Obse
The number of connected Internet of Things (IoT) devices within cyber-physical infrastructure systems grows at an increasing rate. This poses significant device management and security challenges to current IoT networks. Among several approaches to c
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling. A