ترغب بنشر مسار تعليمي؟ اضغط هنا

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker

90   0   0.0 ( 0 )
 نشر من قبل Runxin Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Document-level event extraction aims to recognize event information from a whole piece of article. Existing methods are not effective due to two challenges of this task: a) the target event arguments are scattered across sentences; b) the correlation among events in a document is non-trivial to model. In this paper, we propose Heterogeneous Graph-based Interaction Model with a Tracker (GIT) to solve the aforementioned two challenges. For the first challenge, GIT constructs a heterogeneous graph interaction network to capture global interactions among different sentences and entity mentions. For the second, GIT introduces a Tracker module to track the extracted events and hence capture the interdependency among the events. Experiments on a large-scale dataset (Zheng et al., 2019) show GIT outperforms the previous methods by 2.8 F1. Further analysis reveals GIT is effective in extracting multiple correlated events and event arguments that scatter across the document. Our code is available at https://github.com/RunxinXu/GIT.



قيم البحث

اقرأ أيضاً

Document-level relation extraction aims to extract relations among entities within a document. Different from sentence-level relation extraction, it requires reasoning over multiple sentences across a document. In this paper, we propose Graph Aggrega tion-and-Inference Network (GAIN) featuring double graphs. GAIN first constructs a heterogeneous mention-level graph (hMG) to model complex interaction among different mentions across the document. It also constructs an entity-level graph (EG), based on which we propose a novel path reasoning mechanism to infer relations between entities. Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art. Our code is available at https://github.com/DreamInvoker/GAIN .
Document-level relation extraction aims to discover relations between entities across a whole document. How to build the dependency of entities from different sentences in a document remains to be a great challenge. Current approaches either leverage syntactic trees to construct document-level graphs or aggregate inference information from different sentences. In this paper, we build cross-sentence dependencies by inferring compositional relations between inter-sentence mentions. Adopting aggressive linking strategy, intermediate relations are reasoned on the document-level graphs by mention convolution. We further notice the generalization problem of NA instances, which is caused by incomplete annotation and worsened by fully-connected mention pairs. An improved ranking loss is proposed to attend this problem. Experiments show the connections between different mentions are crucial to document-level relation extraction, which enables the model to extract more meaningful higher-level compositional relations.
156 - Wang Xu , Kehai Chen , Tiejun Zhao 2020
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past se veral years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
Document-level entity-based extraction (EE), aiming at extracting entity-centric information such as entity roles and entity relations, is key to automatic knowledge acquisition from text corpora for various domains. Most document-level EE systems bu ild extractive models, which struggle to model long-term dependencies among entities at the document level. To address this issue, we propose a generative framework for two document-level EE tasks: role-filler entity extraction (REE) and relation extraction (RE). We first formulate them as a template generation problem, allowing models to efficiently capture cross-entity dependencies, exploit label semantics, and avoid the exponential computation complexity of identifying N-ary relations. A novel cross-attention guided copy mechanism, TopK Copy, is incorporated into a pre-trained sequence-to-sequence model to enhance the capabilities of identifying key information in the input document. Experiments done on the MUC-4 and SciREX dataset show new state-of-the-art results on REE (+3.26%), binary RE (+4.8%), and 4-ary RE (+2.7%) in F1 score.
154 - Xinya Du , Claire Cardie 2020
Few works in the literature of event extraction have gone beyond individual sentences to make extraction decisions. This is problematic when the information needed to recognize an event argument is spread across multiple sentences. We argue that docu ment-level event extraction is a difficult task since it requires a view of a larger context to determine which spans of text correspond to event role fillers. We first investigate how end-to-end neural sequence models (with pre-trained language model representations) perform on document-level role filler extraction, as well as how the length of context captured affects the models performance. To dynamically aggregate information captured by neural representations learned at different levels of granularity (e.g., the sentence- and paragraph-level), we propose a novel multi-granularity reader. We evaluate our models on the MUC-4 event extraction dataset, and show that our best system performs substantially better than prior work. We also report findings on the relationship between context length and neural model performance on the task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا