ﻻ يوجد ملخص باللغة العربية
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past several years. However, the learned graph representation universally models relation information between all entity pairs regardless of whether there are relationships between these entity pairs. Thus, those entity pairs without relationships disperse the attention of the encoder-classifier DocRE for ones with relationships, which may further hind the improvement of DocRE. To alleviate this issue, we propose a novel encoder-classifier-reconstructor model for DocRE. The reconstructor manages to reconstruct the ground-truth path dependencies from the graph representation, to ensure that the proposed DocRE model pays more attention to encode entity pairs with relationships in the training. Furthermore, the reconstructor is regarded as a relationship indicator to assist relation classification in the inference, which can further improve the performance of DocRE model. Experimental results on a large-scale DocRE dataset show that the proposed model can significantly improve the accuracy of relation extraction on a strong heterogeneous graph-based baseline.
Document-level relation extraction (DocRE) aims at extracting the semantic relations among entity pairs in a document. In DocRE, a subset of the sentences in a document, called the evidence sentences, might be sufficient for predicting the relation b
Document-level relation extraction aims to extract relations among multiple entity pairs from a document. Previously proposed graph-based or transformer-based models utilize the entities independently, regardless of global information among relationa
Document-level relation extraction (DocRE) models generally use graph networks to implicitly model the reasoning skill (i.e., pattern recognition, logical reasoning, coreference reasoning, etc.) related to the relation between one entity pair in a do
Most information extraction methods focus on binary relations expressed within single sentences. In high-value domains, however, $n$-ary relations are of great demand (e.g., drug-gene-mutation interactions in precision oncology). Such relations often
Document-level relation extraction requires integrating information within and across multiple sentences of a document and capturing complex interactions between inter-sentence entities. However, effective aggregation of relevant information in the d