ﻻ يوجد ملخص باللغة العربية
Few works in the literature of event extraction have gone beyond individual sentences to make extraction decisions. This is problematic when the information needed to recognize an event argument is spread across multiple sentences. We argue that document-level event extraction is a difficult task since it requires a view of a larger context to determine which spans of text correspond to event role fillers. We first investigate how end-to-end neural sequence models (with pre-trained language model representations) perform on document-level role filler extraction, as well as how the length of context captured affects the models performance. To dynamically aggregate information captured by neural representations learned at different levels of granularity (e.g., the sentence- and paragraph-level), we propose a novel multi-granularity reader. We evaluate our models on the MUC-4 event extraction dataset, and show that our best system performs substantially better than prior work. We also report findings on the relationship between context length and neural model performance on the task.
We revisit the classic problem of document-level role-filler entity extraction (REE) for template filling. We argue that sentence-level approaches are ill-suited to the task and introduce a generative transformer-based encoder-decoder framework (GRIT
Document-level discourse parsing, in accordance with the Rhetorical Structure Theory (RST), remains notoriously challenging. Challenges include the deep structure of document-level discourse trees, the requirement of subtle semantic judgments, and th
In document-level relation extraction (DocRE), graph structure is generally used to encode relation information in the input document to classify the relation category between each entity pair, and has greatly advanced the DocRE task over the past se
Document-level event extraction aims to recognize event information from a whole piece of article. Existing methods are not effective due to two challenges of this task: a) the target event arguments are scattered across sentences; b) the correlation
We examine the capabilities of a unified, multi-task framework for three information extraction tasks: named entity recognition, relation extraction, and event extraction. Our framework (called DyGIE++) accomplishes all tasks by enumerating, refining