ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy-momentum tensor of the nucleon on the light front: Abel tomography case

121   0   0.0 ( 0 )
 نشر من قبل Hyun-Chul Kim
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the two-dimensional energy-momentum-tensor (EMT) distributions of the nucleon on the light front, using the Abel transforms of the three-dimensional EMT ones. We explicitly show that the main features of all EMT distributions are kept intact in the course of the Abel transform. We also examine the equivalence between the global and local conditions for the nucleon stability in the three-dimensional Breit frame and in the two-dimensional transverse plane on the light front. We also discuss the two-dimensional force fields inside a nucleon on the light front.

قيم البحث

اقرأ أيضاً

We derive simple relations which express 2D light front force distributions in terms of 3D Breit frame pressure and shear force distributions. Mathematically the relations correspond to invertible Abel transformation and they establish one-to-one mat hematical equivalence of 3D Breit frame force distributions and 2D light front ones. Any knowledge (model calculation, experimental measurement, etc.) about pressure and shear force distributions in Breit frame can be unambiguously transformed into light front force distributions with the help of Abel transformation. It is important that the transformation ensures 2D stability conditions if the 3D stability conditions are satisfied. As an illustration of how the relations work, we calculated the light front force distributions for a large nucleus as a liquid drop, and for large $N_c$ nucleon as a chiral soliton.
We investigate the two-dimensional transverse charge distributions of the transversely polarized nucleon. As the longitudinal momentum ($P_z$) of the nucleon increases, the electric dipole moment is induced, which causes the displacement of the trans verse charge and magnetization distributions of the nucleon. The induced dipole moment of the proton reaches its maximum value at around $P_z approx 3.2$ GeV due to the kinematical reason. We also investigate how the Abel transformations map the three-dimensional charge and magnetization distributions in the Breit frame on to the transverse charge and magnetization ones in the infinite momentum frame.
The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
The probably most fundamental information about a particle is contained in the matrix elements of its energy momentum tensor (EMT) which are accessible from hard-exclusive reactions via generalized parton distribution functions. The spin decompositio n of the nucleon and Ji sum rule are one example. Less prominent but equally important information is encoded in the stress tensor, related to the spatial components of the EMT, which shows in detail how the strong forces inside the nucleon balance to form a bound state. This provides not only unique insights on nucleon structure. It also leads to fascinating new applications to hadron spectroscopy which allow us to formulate new interpretations of the charmonium-nucleon pentaquarks discovered by LHCb. Recent progress is reviewed in this short overview article.
The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function $w(x)$ which incorporates Regge behavior at small $x$ and inclusive counting rules at $x to 1$. A simple ans atz for $w(x)$ which fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا