The structure of generalized parton distributions is determined from light-front holographic QCD up to a universal reparametrization function $w(x)$ which incorporates Regge behavior at small $x$ and inclusive counting rules at $x to 1$. A simple ansatz for $w(x)$ which fulfills these physics constraints with a single-parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in comparison with global fits. The analytic structure of the amplitudes leads to a connection with the Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
Basis Light-front Quantization (BLFQ) has recently been developed as a promising nonperturbative technique. Using BLFQ, we investigate the Generalized Parton Distributions (GPDs) in a nonperturbative framework for a dressed electron in QED. We evalua
te light-front wave functions and carry out overlap calculations to obtain GPDs. We also perform perturbative calculations in the corresponding basis spaces to demonstrate that they compare reasonably with the BLFQ results.
Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valenc
e distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
We perform the first global QCD analysis of pion valence, sea quark, and gluon distributions within a Bayesian Monte Carlo framework with threshold resummation on Drell-Yan cross sections at next-to-leading log accuracy. Exploring various treatments
of resummation, we find that the large-$x$ asymptotics of the valence quark distribution $sim (1-x)^{beta_v}$ can differ significantly, with $beta_v$ ranging from $approx 1$ to $> 2.5$ at the input scale. Regardless of the specific implementation, however, the resummation induced redistribution of the momentum between valence quarks and gluons boosts the total momentum carried by gluons to $approx 40%$, increasing the gluon contribution to the pion mass to $approx 40$ MeV.
Deeply virtual Compton scattering (DVCS) attracts a lot of interest due to its sensitivity to generalized parton distributions (GPDs) which provide a rich access to the partonic structure of hadrons. However, the practical extraction of GPDs for this
channel requires a deconvolution procedure, whose feasibility has been disputed. We provide a practical approach to this problem based on a next-to-leading order analysis and a careful study of evolution effects, by exhibiting shadow GPDs with arbitrarily small imprints on DVCS observables at current and future experimental facilities. This shows that DVCS alone will not allow for a model independent extraction of GPDs and a multi-channel analysis is required for this purpose.
In this article a systematic quantitative analysis of the isoscalar bosonic states is performed in the framework of supersymmetric light front holographic QCD. It is shown that the spectroscopy of the $eta$ and $h$ mesons can be well described if one
additional mass parameter -- which corresponds to the hard breaking of chiral $U(1)$ symmetry in standard QCD -- is introduced. The mass difference of the $eta$ and $eta$ isoscalar mesons is then determined by the strange quark mass content of the $eta$. The theory also predicts the existence of isoscalar tetraquarks which are bound states of diquarks and anti-diquarks. The candidates for these exotic isoscalar tetraquarks are identified. In particular, the $f_0(1500)$ is identified as isoscalar tetraquark; the predicted mass value 1.52 GeV agrees with the measured experimental value within the model uncertainties.
Guy F. de Teramond
,Tianbo Liu
,Raza Sabbir Sufian
.
(2018)
.
"Universality of Generalized Parton Distributions in Light-Front Holographic QCD"
.
Guy F. de T\\'eramond
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا