ﻻ يوجد ملخص باللغة العربية
We investigate the two-dimensional transverse charge distributions of the transversely polarized nucleon. As the longitudinal momentum ($P_z$) of the nucleon increases, the electric dipole moment is induced, which causes the displacement of the transverse charge and magnetization distributions of the nucleon. The induced dipole moment of the proton reaches its maximum value at around $P_z approx 3.2$ GeV due to the kinematical reason. We also investigate how the Abel transformations map the three-dimensional charge and magnetization distributions in the Breit frame on to the transverse charge and magnetization ones in the infinite momentum frame.
We investigate the two-dimensional energy-momentum-tensor (EMT) distributions of the nucleon on the light front, using the Abel transforms of the three-dimensional EMT ones. We explicitly show that the main features of all EMT distributions are kept
We derive simple relations which express 2D light front force distributions in terms of 3D Breit frame pressure and shear force distributions. Mathematically the relations correspond to invertible Abel transformation and they establish one-to-one mat
We study the prospects of using femtoscopic low-momentum correlation measurements at the Large Hadron Collider to access properties of the J/psi-nucleon interaction. The QCD multipole expansion in terms of the J/psi chromopolarizability relates the f
We investigate the strong force fields and stabilities of the nucleon and the singly heavy baryon $Sigma_c$ within the framework of the chiral quark-soliton model. Having constructed the pion mean fields in the presence of the $N_c-1$ level quarks se
This work presents the first calculation in lattice QCD of three moments of spin-averaged and spin-polarized generalized parton distributions in the proton. It is shown that the slope of the associated generalized form factors decreases significantly