ﻻ يوجد ملخص باللغة العربية
The probably most fundamental information about a particle is contained in the matrix elements of its energy momentum tensor (EMT) which are accessible from hard-exclusive reactions via generalized parton distribution functions. The spin decomposition of the nucleon and Ji sum rule are one example. Less prominent but equally important information is encoded in the stress tensor, related to the spatial components of the EMT, which shows in detail how the strong forces inside the nucleon balance to form a bound state. This provides not only unique insights on nucleon structure. It also leads to fascinating new applications to hadron spectroscopy which allow us to formulate new interpretations of the charmonium-nucleon pentaquarks discovered by LHCb. Recent progress is reviewed in this short overview article.
We provide the complete decomposition of the local gauge-invariant energy-momentum tensor for spin-1 hadrons, including non-conserved terms for the individual parton flavors and antisymmetric contributions originating from intrinsic spin. We state su
Theories with generalised conformal structure contain a dimensionful parameter, which appears as an overall multiplicative factor in the action. Examples of such theories are gauge theories coupled to massless scalars and fermions with Yukawa interac
We investigate the two-dimensional energy-momentum-tensor (EMT) distributions of the nucleon on the light front, using the Abel transforms of the three-dimensional EMT ones. We explicitly show that the main features of all EMT distributions are kept
We report results on the proton mass decomposition and also on related quark and glue momentum fractions. The results are based on overlap valence fermions on four ensembles of $N_f = 2+1$ DWF configurations with three lattice spacings and three volu
The structure of the matrix elements of the energy-momentum tensor play an important role in determining the properties of the form factors $A(q^{2})$, $B(q^{2})$ and $C(q^{2})$ which appear in the Lorentz covariant decomposition of the matrix elemen