ﻻ يوجد ملخص باللغة العربية
The mining in physics and biology for accelerating the hardcore algorithm to solve non-deterministic polynomial (NP) hard problems has inspired a great amount of special-purpose ma-chine models. Ising machine has become an efficient solver for various combinatorial optimizationproblems. As a computing accelerator, large-scale photonic spatial Ising machine have great advan-tages and potentials due to excellent scalability and compact system. However, current fundamentallimitation of photonic spatial Ising machine is the configuration flexibility of problem implementationin the accelerator model. Arbitrary spin interactions is highly desired for solving various NP hardproblems. Moreover, the absence of external magnetic field in the proposed photonic Ising machinewill further narrow the freedom to map the optimization applications. In this paper, we propose anovel quadrature photonic spatial Ising machine to break through the limitation of photonic Isingaccelerator by synchronous phase manipulation in two and three sections. Max-cut problem solutionwith graph order of 100 and density from 0.5 to 1 is experimentally demonstrated after almost 100iterations. We derive and verify using simulation the solution for Max-cut problem with more than1600 nodes and the system tolerance for light misalignment. Moreover, vertex cover problem, modeled as an Ising model with external magnetic field, has been successfully implemented to achievethe optimal solution. Our work suggests flexible problem solution by large-scale photonic spatialIsing machine.
Recently, spatial photonic Ising machines (SPIM) have been demonstrated to compute the minima of Hamiltonians for large-scale spin systems. Here we propose to implement an antiferromagnetic model through optoelectronic correlation computing with SPIM
Statistical spin dynamics plays a key role to understand the working principle for novel optical Ising machines. Here we propose the gauge transformations for spatial photonic Ising machine, where a single spatial phase modulator simultaneously encod
We review some of the basic principles, fundamentals, technologies, architectures and recent advances leading to thefor the implementation of Field Programmable Photonic Field Arrays (FPPGAs).
Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate
In photonic neural network a key building block is the perceptron. Here, we describe and demonstrate a complex-valued photonic perceptron that combines time and space multiplexing in a fully passive silicon photonics integrated circuit. An input time