ترغب بنشر مسار تعليمي؟ اضغط هنا

Antiferromagnetic spatial photonic Ising machine through optoelectronic correlation computing

73   0   0.0 ( 0 )
 نشر من قبل Zhichao Ruan
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, spatial photonic Ising machines (SPIM) have been demonstrated to compute the minima of Hamiltonians for large-scale spin systems. Here we propose to implement an antiferromagnetic model through optoelectronic correlation computing with SPIM. Also we exploit the gauge transformation which enables encoding the spins and the interaction strengths in a single phase-only spatial light modulator. With a simple setup, we experimentally show the ground state search of an antiferromagnetic model with $40000$ spins in number-partitioning problem. Thus such an optoelectronic computing exhibits great programmability and scalability for the practical applications of studying statistical systems and combinatorial optimization problems.

قيم البحث

اقرأ أيضاً

The mining in physics and biology for accelerating the hardcore algorithm to solve non-deterministic polynomial (NP) hard problems has inspired a great amount of special-purpose ma-chine models. Ising machine has become an efficient solver for variou s combinatorial optimizationproblems. As a computing accelerator, large-scale photonic spatial Ising machine have great advan-tages and potentials due to excellent scalability and compact system. However, current fundamentallimitation of photonic spatial Ising machine is the configuration flexibility of problem implementationin the accelerator model. Arbitrary spin interactions is highly desired for solving various NP hardproblems. Moreover, the absence of external magnetic field in the proposed photonic Ising machinewill further narrow the freedom to map the optimization applications. In this paper, we propose anovel quadrature photonic spatial Ising machine to break through the limitation of photonic Isingaccelerator by synchronous phase manipulation in two and three sections. Max-cut problem solutionwith graph order of 100 and density from 0.5 to 1 is experimentally demonstrated after almost 100iterations. We derive and verify using simulation the solution for Max-cut problem with more than1600 nodes and the system tolerance for light misalignment. Moreover, vertex cover problem, modeled as an Ising model with external magnetic field, has been successfully implemented to achievethe optimal solution. Our work suggests flexible problem solution by large-scale photonic spatialIsing machine.
Statistical spin dynamics plays a key role to understand the working principle for novel optical Ising machines. Here we propose the gauge transformations for spatial photonic Ising machine, where a single spatial phase modulator simultaneously encod es spin configurations and programs interaction strengths. Thanks to gauge transformation, we experimentally evaluate the phase diagram of high-dimensional spin-glass equilibrium system with $100$ fully-connected spins. We observe the presence of paramagnetic, ferromagnetic as well as spin-glass phases and determine the critical temperature $T_c$ and the critical probability ${{p}_{c}}$ of phase transitions, which agree well with the mean-field theory predictions. Thus the approximation of the mean-field model is experimentally validated in the spatial photonic Ising machine. Furthermore, we discuss the phase transition in parallel with solving combinatorial optimization problems during the cooling process and identify that the spatial photonic Ising machine is robust with sufficient many-spin interactions, even when the system is associated with the optical aberrations and the measurement uncertainty.
Machine learning software applications are nowadays ubiquitous in many fields of science and society for their outstanding capability of solving computationally vast problems like the recognition of patterns and regularities in big datasets. One of t he main goals of research is the realization of a physical neural network able to perform data processing in a much faster and energy-efficient way than the state-of-the-art technology. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing using fast optical nonlinearities and with lower error rate than any previous hardware implementation. We demonstrate that our neural network significantly increases the recognition efficiency compared to the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in reservoir computing architectures.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex and unstructured data as our brain does. Neuromorphic computing systems are aimed at addressing these needs. The human brain performs about 10^15 calculations per second using 20W and a 1.2L volume. By taking inspiration from biology, new generation computers could have much lower power consumption than conventional processors, could exploit integrated non-volatile memory and logic, and could be explicitly designed to support dynamic learning in the context of complex and unstructured data. Among their potential future applications, business, health care, social security, disease and viruses spreading control might be the most impactful at societal level. This roadmap envisages the potential applications of neuromorphic materials in cutting edge technologies and focuses on the design and fabrication of artificial neural systems. The contents of this roadmap will highlight the interdisciplinary nature of this activity which takes inspiration from biology, physics, mathematics, computer science and engineering. This will provide a roadmap to explore and consolidate new technology behind both present and future applications in many technologically relevant areas.
Brain-inspired neuromorphic computing which consist neurons and synapses, with an ability to perform complex information processing has unfolded a new paradigm of computing to overcome the von Neumann bottleneck. Electronic synaptic memristor devices which can compete with the biological synapses are indeed significant for neuromorphic computing. In this work, we demonstrate our efforts to develop and realize the graphene oxide (GO) based memristor device as a synaptic device, which mimic as a biological synapse. Indeed, this device exhibits the essential synaptic learning behavior including analog memory characteristics, potentiation and depression. Furthermore, spike-timing-dependent-plasticity learning rule is mimicked by engineering the pre- and post-synaptic spikes. In addition, non-volatile properties such as endurance, retentivity, multilevel switching of the device are explored. These results suggest that Ag/GO/FTO memristor device would indeed be a potential candidate for future neuromorphic computing applications. Keywords: RRAM, Graphene oxide, neuromorphic computing, synaptic device, potentiation, depression
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا