ﻻ يوجد ملخص باللغة العربية
Statistical spin dynamics plays a key role to understand the working principle for novel optical Ising machines. Here we propose the gauge transformations for spatial photonic Ising machine, where a single spatial phase modulator simultaneously encodes spin configurations and programs interaction strengths. Thanks to gauge transformation, we experimentally evaluate the phase diagram of high-dimensional spin-glass equilibrium system with $100$ fully-connected spins. We observe the presence of paramagnetic, ferromagnetic as well as spin-glass phases and determine the critical temperature $T_c$ and the critical probability ${{p}_{c}}$ of phase transitions, which agree well with the mean-field theory predictions. Thus the approximation of the mean-field model is experimentally validated in the spatial photonic Ising machine. Furthermore, we discuss the phase transition in parallel with solving combinatorial optimization problems during the cooling process and identify that the spatial photonic Ising machine is robust with sufficient many-spin interactions, even when the system is associated with the optical aberrations and the measurement uncertainty.
Recently, spatial photonic Ising machines (SPIM) have been demonstrated to compute the minima of Hamiltonians for large-scale spin systems. Here we propose to implement an antiferromagnetic model through optoelectronic correlation computing with SPIM
The mining in physics and biology for accelerating the hardcore algorithm to solve non-deterministic polynomial (NP) hard problems has inspired a great amount of special-purpose ma-chine models. Ising machine has become an efficient solver for variou
We introduce and study a non-conserving sandpile model, the autonomously adapting sandpile (AAS) model, for which a site topples whenever it has two or more grains, distributing three or two grains randomly on its neighboring sites, respectively with
Inverse phase transitions are striking phenomena in which an apparently more ordered state disorders under cooling. This behavior can naturally emerge in tricritical systems on heterogeneous networks and it is strongly enhanced by the presence of dis
We experimentally address the importance of tuning in athermal phase transitions, which are triggered only by a slowly varying external field acting as tuning parameter. Using higher order statistics of fluctuations, a singular critical instability i