ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects and applications of photonic neural networks

96   0   0.0 ( 0 )
 نشر من قبل Chaoran Huang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural networks have enabled applications in artificial intelligence through machine learning, and neuromorphic computing. Software implementations of neural networks on conventional computers that have separate memory and processor (and that operate sequentially) are limited in speed and energy efficiency. Neuromorphic engineering aims to build processors in which hardware mimics neurons and synapses in the brain for distributed and parallel processing. Neuromorphic engineering enabled by photonics (optical physics) can offer sub-nanosecond latencies and high bandwidth with low energies to extend the domain of artificial intelligence and neuromorphic computing applications to machine learning acceleration, nonlinear programming, intelligent signal processing, etc. Photonic neural networks have been demonstrated on integrated platforms and free-space optics depending on the class of applications being targeted. Here, we discuss the prospects and demonstrated applications of these photonic neural networks.

قيم البحث

اقرأ أيضاً

Silicon-photonic neural networks (SPNNs) offer substantial improvements in computing speed and energy efficiency compared to their digital electronic counterparts. However, the energy efficiency and accuracy of SPNNs are highly impacted by uncertaint ies that arise from fabrication-process and thermal variations. In this paper, we present the first comprehensive and hierarchical study on the impact of random uncertainties on the classification accuracy of a Mach-Zehnder Interferometer (MZI)-based SPNN. We show that such impact can vary based on both the location and characteristics (e.g., tuned phase angles) of a non-ideal silicon-photonic device. Simulation results show that in an SPNN with two hidden layers and 1374 tunable-thermal-phase shifters, random uncertainties even in mature fabrication processes can lead to a catastrophic 70% accuracy loss.
Convolution neural network (CNN), as one of the most powerful and popular technologies, has achieved remarkable progress for image and video classification since its invention in 1989. However, with the high definition video-data explosion, convoluti on layers in the CNN architecture will occupy a great amount of computing time and memory resources due to high computation complexity of matrix multiply accumulate operation. In this paper, a novel integrated photonic CNN is proposed based on double correlation operations through interleaved time-wavelength modulation. Micro-ring based multi-wavelength manipulation and single dispersion medium are utilized to realize convolution operation and replace the conventional optical delay lines. 200 images are tested in MNIST datasets with accuracy of 85.5% in our photonic CNN versus 86.5% in 64-bit computer.We also analyze the computing error of photonic CNN caused by various micro-ring parameters, operation baud rates and the characteristics of micro-ring weighting bank. Furthermore, a tensor processing unit based on 4x4 mesh with 1.2 TOPS (operation per second when 100% utilization) computing capability at 20G baud rate is proposed and analyzed to form a paralleled photonic CNN.
Deep neural networks with applications from computer vision and image processing to medical diagnosis are commonly implemented using clock-based processors, where computation speed is limited by the clock frequency and the memory access time. Advance s in photonic integrated circuits have enabled research in photonic computation, where, despite excellent features such as fast linear computation, no integrated photonic deep network has been demonstrated to date due to the lack of scalable nonlinear functionality and the loss of photonic devices, making scalability to a large number of layers challenging. Here we report the first integrated end-to-end photonic deep neural network (PDNN) that performs instantaneous image classification through direct processing of optical waves. Images are formed on the input pixels and optical waves are coupled into nanophotonic waveguides and processed as the light propagates through layers of neurons on-chip. Each neuron generates an optical output from input optical signals, where linear computation is performed optically and the nonlinear activation function is realised opto-electronically. The output of a laser coupled into the chip is uniformly distributed among all neurons within the network providing the same per-neuron supply light. Thus, all neurons have the same optical output range enabling scalability to deep networks with large number of layers. The PDNN chip is used for 2- and 4-class classification of handwritten letters achieving accuracies of higher than 93.7% and 90.3%, respectively, with a computation time less than one clock cycle of state-of-the-art digital computation platforms. Direct clock-less processing of optical data eliminates photo-detection, A/D conversion, and the requirement for a large memory module, enabling significantly faster and more energy-efficient neural networks for the next generations of deep learning systems.
We propose an optimization method to improve power efficiency and robustness in silicon-photonic-based coherent integrated photonic neural networks. Our method reduces the network power consumption by 15.3% and the accuracy loss under uncertainties by 16.1%.
The mining in physics and biology for accelerating the hardcore algorithm to solve non-deterministic polynomial (NP) hard problems has inspired a great amount of special-purpose ma-chine models. Ising machine has become an efficient solver for variou s combinatorial optimizationproblems. As a computing accelerator, large-scale photonic spatial Ising machine have great advan-tages and potentials due to excellent scalability and compact system. However, current fundamentallimitation of photonic spatial Ising machine is the configuration flexibility of problem implementationin the accelerator model. Arbitrary spin interactions is highly desired for solving various NP hardproblems. Moreover, the absence of external magnetic field in the proposed photonic Ising machinewill further narrow the freedom to map the optimization applications. In this paper, we propose anovel quadrature photonic spatial Ising machine to break through the limitation of photonic Isingaccelerator by synchronous phase manipulation in two and three sections. Max-cut problem solutionwith graph order of 100 and density from 0.5 to 1 is experimentally demonstrated after almost 100iterations. We derive and verify using simulation the solution for Max-cut problem with more than1600 nodes and the system tolerance for light misalignment. Moreover, vertex cover problem, modeled as an Ising model with external magnetic field, has been successfully implemented to achievethe optimal solution. Our work suggests flexible problem solution by large-scale photonic spatialIsing machine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا