ﻻ يوجد ملخص باللغة العربية
Cross features play an important role in click-through rate (CTR) prediction. Most of the existing methods adopt a DNN-based model to capture the cross features in an implicit manner. These implicit methods may lead to a sub-optimized performance due to the limitation in explicit semantic modeling. Although traditional statistical explicit semantic cross features can address the problem in these implicit methods, it still suffers from some challenges, including lack of generalization and expensive memory cost. Few works focus on tackling these challenges. In this paper, we take the first step in learning the explicit semantic cross features and propose Pre-trained Cross Feature learning Graph Neural Networks (PCF-GNN), a GNN based pre-trained model aiming at generating cross features in an explicit fashion. Extensive experiments are conducted on both public and industrial datasets, where PCF-GNN shows competence in both performance and memory-efficiency in various tasks.
The CTR (Click-Through Rate) prediction plays a central role in the domain of computational advertising and recommender systems. There exists several kinds of methods proposed in this field, such as Logistic Regression (LR), Factorization Machines (F
Click-through rate prediction is one of the core tasks in commercial recommender systems. It aims to predict the probability of a user clicking a particular item given user and item features. As feature interactions bring in non-linearity, they are w
Graph Neural Networks (GNNs) for prediction tasks like node classification or edge prediction have received increasing attention in recent machine learning from graphically structured data. However, a large quantity of labeled graphs is difficult to
CTR prediction, which aims to estimate the probability that a user will click an item, plays a crucial role in online advertising and recommender system. Feature interaction modeling based and user interest mining based methods are the two kinds of m
Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some