ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual Graph enhanced Embedding Neural Network for CTR Prediction

134   0   0.0 ( 0 )
 نشر من قبل Wei Guo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

CTR prediction, which aims to estimate the probability that a user will click an item, plays a crucial role in online advertising and recommender system. Feature interaction modeling based and user interest mining based methods are the two kinds of most popular techniques that have been extensively explored for many years and have made great progress for CTR prediction. However, (1) feature interaction based methods which rely heavily on the co-occurrence of different features, may suffer from the feature sparsity problem (i.e., many features appear few times); (2) user interest mining based methods which need rich user behaviors to obtain users diverse interests, are easy to encounter the behavior sparsity problem (i.e., many users have very short behavior sequences). To solve these problems, we propose a novel module named Dual Graph enhanced Embedding, which is compatible with various CTR prediction models to alleviate these two problems. We further propose a Dual Graph enhanced Embedding Neural Network (DG-ENN) for CTR prediction. Dual Graph enhanced Embedding exploits the strengths of graph representation with two carefully designed learning strategies (divide-and-conquer, curriculum-learning-inspired organized learning) to refine the embedding. We conduct comprehensive experiments on three real-world industrial datasets. The experimental results show that our proposed DG-ENN significantly outperforms state-of-the-art CTR prediction models. Moreover, when applying to state-of-the-art CTR prediction models, Dual graph enhanced embedding always obtains better performance. Further case studies prove that our proposed dual graph enhanced embedding could alleviate the feature sparsity and behavior sparsity problems. Our framework will be open-source based on MindSpore in the near future.

قيم البحث

اقرأ أيضاً

As a critical component for online advertising and marking, click-through rate (CTR) prediction has draw lots of attentions from both industry and academia field. Recently, the deep learning has become the mainstream methodological choice for CTR. De spite of sustainable efforts have been made, existing approaches still pose several challenges. On the one hand, high-order interaction between the features is under-explored. On the other hand, high-order interactions may neglect the semantic information from the low-order fields. In this paper, we proposed a novel prediction method, named FINT, that employs the Field-aware INTeraction layer which captures high-order feature interactions while retaining the low-order field information. To empirically investigate the effectiveness and robustness of the FINT, we perform extensive experiments on the three realistic databases: KDD2012, Criteo and Avazu. The obtained results demonstrate that the FINT can significantly improve the performance compared to the existing methods, without increasing the amount of computation required. Moreover, the proposed method brought about 2.72% increase to the advertising revenue of a big online video app through A/B testing. To better promote the research in CTR field, we released our code as well as reference implementation at: https://github.com/zhishan01/FINT.
Click-Through Rate (CTR) prediction is critical for industrial recommender systems, where most deep CTR models follow an Embedding & Feature Interaction paradigm. However, the majority of methods focus on designing network architectures to better cap ture feature interactions while the feature embedding, especially for numerical features, has been overlooked. Existing approaches for numerical features are difficult to capture informative knowledge because of the low capacity or hard discretization based on the offline expertise feature engineering. In this paper, we propose a novel embedding learning framework for numerical features in CTR prediction (AutoDis) with high model capacity, end-to-end training and unique representation properties preserved. AutoDis consists of three core components: meta-embeddings, automatic discretization and aggregation. Specifically, we propose meta-embeddings for each numerical field to learn global knowledge from the perspective of field with a manageable number of parameters. Then the differentiable automatic discretization performs soft discretization and captures the correlations between the numerical features and meta-embeddings. Finally, distinctive and informative embeddings are learned via an aggregation function. Comprehensive experiments on two public and one industrial datasets are conducted to validate the effectiveness of AutoDis. Moreover, AutoDis has been deployed onto a mainstream advertising platform, where online A/B test demonstrates the improvement over the base model by 2.1% and 2.7% in terms of CTR and eCPM, respectively. In addition, the code of our framework is publicly available in MindSpore(https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/recommend/autodis).
Click-through rate (CTR) prediction plays an important role in online advertising and recommender systems. In practice, the training of CTR models depends on click data which is intrinsically biased towards higher positions since higher position has higher CTR by nature. Existing methods such as actual position training with fixed position inference and inverse propensity weighted training with no position inference alleviate the bias problem to some extend. However, the different treatment of position information between training and inference will inevitably lead to inconsistency and sub-optimal online performance. Meanwhile, the basic assumption of these methods, i.e., the click probability is the product of examination probability and relevance probability, is oversimplified and insufficient to model the rich interaction between position and other information. In this paper, we propose a Deep Position-wise Interaction Network (DPIN) to efficiently combine all candidate items and positions for estimating CTR at each position, achieving consistency between offline and online as well as modeling the deep non-linear interaction among position, user, context and item under the limit of serving performance. Following our new treatment to the position bias in CTR prediction, we propose a new evaluation metrics named PAUC (position-wise AUC) that is suitable for measuring the ranking quality at a given position. Through extensive experiments on a real world dataset, we show empirically that our method is both effective and efficient in solving position bias problem. We have also deployed our method in production and observed statistically significant improvement over a highly optimized baseline in a rigorous A/B test.
300 - Kai Zhang , Hao Qian , Qing Cui 2020
In the Click-Through Rate (CTR) prediction scenario, users sequential behaviors are well utilized to capture the user interest in the recent literature. However, despite being extensively studied, these sequential methods still suffer from three limi tations. First, existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction, because users often click on new products that are irrelevant to any historical behaviors. Second, in the real scenario, there exist numerous users that have operations a long time ago, but turn relatively inactive in recent times. Thus, it is hard to precisely capture users current preferences through early behaviors. Third, multiple representations of users historical behaviors in different feature subspaces are largely ignored. To remedy these issues, we propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features (e.g., gender, age and occupation in user-profile). Specifically, MIAN contains a Multi-Interactive Layer (MIL) that integrates three local interaction modules to capture multiple representations of user preference through sequential behaviors and simultaneously utilize the fine-grained user-specific as well as context information. In addition, we design a Global Interaction Module (GIM) to learn the high-order interactions and balance the different impacts of multiple features. Finally, Offline experiment results from three datasets, together with an Online A/B test in a large-scale recommendation system, demonstrate the effectiveness of our proposed approach.
Among various recommender techniques, collaborative filtering (CF) is the most successful one. And a key problem in CF is how to represent users and items. Previous works usually represent a user (an item) as a vector of latent factors (aka. textit{e mbedding}) and then model the interactions between users and items based on the representations. Despite its effectiveness, we argue that its insufficient to yield satisfactory embeddings for collaborative filtering. Inspired by the idea of SVD++ that represents users based on themselves and their interacted items, we propose a general collaborative filtering framework named DNCF, short for Dual-embedding based Neural Collaborative Filtering, to utilize historical interactions to enhance the representation. In addition to learning the primitive embedding for a user (an item), we introduce an additional embedding from the perspective of the interacted items (users) to augment the user (item) representation. Extensive experiments on four publicly datasets demonstrated the effectiveness of our proposed DNCF framework by comparing its performance with several traditional matrix factorization models and other state-of-the-art deep learning based recommender models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا