ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-Training Graph Neural Networks for Generic Structural Feature Extraction

114   0   0.0 ( 0 )
 نشر من قبل Ziniu Hu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph neural networks (GNNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GNN model requires a large collection of labeled data and expressive features, which might be inaccessible for some applications. To tackle this problem, we propose a pre-training framework that captures generic graph structural information that is transferable across tasks. Our framework can leverage the following three tasks: 1) denoising link reconstruction, 2) centrality score ranking, and 3) cluster preserving. The pre-training procedure can be conducted purely on the synthetic graphs, and the pre-trained GNN is then adapted for downstream applications. With the proposed pre-training procedure, the generic structural information is learned and preserved, thus the pre-trained GNN requires less amount of labeled data and fewer domain-specific features to achieve high performance on different downstream tasks. Comprehensive experiments demonstrate that our proposed framework can significantly enhance the performance of various tasks at the level of node, link, and graph.

قيم البحث

اقرأ أيضاً

The pre-training on the graph neural network model can learn the general features of large-scale networks or networks of the same type by self-supervised methods, which allows the model to work even when node labels are missing. However, the existing pre-training methods do not take network evolution into consideration. This paper proposes a pre-training method on dynamic graph neural networks (PT-DGNN), which uses dynamic attributed graph generation tasks to simultaneously learn the structure, semantics, and evolution features of the graph. The method includes two steps: 1) dynamic sub-graph sampling, and 2) pre-training with dynamic attributed graph generation task. Comparative experiments on three realistic dynamic network datasets show that the proposed method achieves the best results on the link prediction fine-tuning task.
Despite the prevalence of hypergraphs in a variety of high-impact applications, there are relatively few works on hypergraph representation learning, most of which primarily focus on hyperlink prediction, often restricted to the transductive learning setting. Among others, a major hurdle for effective hypergraph representation learning lies in the label scarcity of nodes and/or hyperedges. To address this issue, this paper presents an end-to-end, bi-level pre-training strategy with Graph Neural Networks for hypergraphs. The proposed framework named HyperGene bears three distinctive advantages. First, it is capable of ingesting the labeling information when available, but more importantly, it is mainly designed in the self-supervised fashion which significantly broadens its applicability. Second, at the heart of the proposed HyperGene are two carefully designed pretexts, one on the node level and the other on the hyperedge level, which enable us to encode both the local and the global context in a mutually complementary way. Third, the proposed framework can work in both transductive and inductive settings. When applying the two proposed pretexts in tandem, it can accelerate the adaptation of the knowledge from the pre-trained model to downstream applications in the transductive setting, thanks to the bi-level nature of the proposed method. The extensive experimental results demonstrate that: (1) HyperGene achieves up to 5.69% improvements in hyperedge classification, and (2) improves pre-training efficiency by up to 42.80% on average.
Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by the success of neural networks, a line of research has been conducted to train GNNs to deal with various tasks, such as node classifi cation, graph classification, and link prediction. In this work, our task of interest is graph classification. Several GNN models have been proposed and shown great accuracy in this task. However, the question is whether usual training methods fully realize the capacity of the GNN models. In this work, we propose a two-stage training framework based on triplet loss. In the first stage, GNN is trained to map each graph to a Euclidean-space vector so that graphs of the same class are close while those of different classes are mapped far apart. Once graphs are well-separated based on labels, a classifier is trained to distinguish between different classes. This method is generic in the sense that it is compatible with any GNN model. By adapting five GNN models to our method, we demonstrate the consistent improvement in accuracy and utilization of each GNNs allocated capacity over the original training method of each model up to 5.4% points in 12 datasets.
Graph neural networks (GNNs) have demonstrated strong performance on a wide variety of tasks due to their ability to model non-uniform structured data. Despite their promise, there exists little research exploring methods to make them more efficient at inference time. In this work, we explore the viability of training quantized GNNs, enabling the usage of low precision integer arithmetic during inference. We identify the sources of error that uniquely arise when attempting to quantize GNNs, and propose an architecturally-agnostic method, Degree-Quant, to improve performance over existing quantization-aware training baselines commonly used on other architectures, such as CNNs. We validate our method on six datasets and show, unlike previous attempts, that models generalize to unseen graphs. Models trained with Degree-Quant for INT8 quantization perform as well as FP32 models in most cases; for INT4 models, we obtain up to 26% gains over the baselines. Our work enables up to 4.7x speedups on CPU when using INT8 arithmetic.
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data. However, training GNNs usually requires abundant task-specific labeled data, which is often arduously expensive to obtain. One effective way to redu ce the labeling effort is to pre-train an expressive GNN model on unlabeled data with self-supervision and then transfer the learned model to downstream tasks with only a few labels. In this paper, we present the GPT-GNN framework to initialize GNNs by generative pre-training. GPT-GNN introduces a self-supervised attributed graph generation task to pre-train a GNN so that it can capture the structural and semantic properties of the graph. We factorize the likelihood of the graph generation into two components: 1) Attribute Generation and 2) Edge Generation. By modeling both components, GPT-GNN captures the inherent dependency between node attributes and graph structure during the generative process. Comprehensive experiments on the billion-scale Open Academic Graph and Amazon recommendation data demonstrate that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا