ﻻ يوجد ملخص باللغة العربية
We explore the tunneling transport properties of a quantum dot embedded in an optical microcavity and coupled to a semiconductor-superconductor one-dimensional nanowire (Majorana nanowire) hosting Majorana zero modes (MZMs) at their edges. Conductance profiles reveal that strong light-matter coupling can be employed to distinguish between the cases of highly nonlocal MZMs, overlapped MZMs and quasi-MZMs. Moreover, we show that it is possible to access the degree of Majorana nonlocality (topological quality factor) by changing the dot spectrum through photon-induced transitions tuned by an external pump applied to the microcavity.
Each end of a Kitaev chain in topological phase hosts a Majorana fermion. Zero bias conductance peak is an evidence of Majorana fermion when the two Majorana fermions are decoupled. These two Majorana fermions are separated in space and this nonlocal
Floquet Majorana edge modes capture the topological features of periodically driven superconductors. We present a Kitaev chain with multiple time periodic driving and demonstrate how the avoidance of bands crossing is altered, which gives rise to new
Qubits based on Majorana zero modes are a promising path towards topological quantum computing. Such qubits, though, are susceptible to quasiparticle poisoning which does not have to be small by topological argument. We study the main sources of the
We propose an interferometer for chiral Majorana modes where the interference effect is caused and controlled by a Josephson junction of proximity-induced topological superconductors, hence, a Majorana-Josephson interferometer. This interferometer is
A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is $log 2$. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of $frac{1}{2}log 2$ is expe