ﻻ يوجد ملخص باللغة العربية
We propose an interferometer for chiral Majorana modes where the interference effect is caused and controlled by a Josephson junction of proximity-induced topological superconductors, hence, a Majorana-Josephson interferometer. This interferometer is based on a two-terminal quantum anomalous Hall bar, and as such its transport observables exhibit interference patterns depending on both the Josephson phase and the junction length. Observing these interference patterns will establish quantum coherent Majorana transport and further provide a powerful characterization tool for the relevant system.
Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low charge concentration materials, and present technological diffculties limiting their scalability. Surpr
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outsi
Topological superconductors which support Majorana fermions are thought to be realized in one-dimensional semiconducting wires coupled to a superconductor. Such excitations are expected to exhibit non-Abelian statistics and can be used to realize qua
As part of the intense effort towards identifying platforms in which Majorana bound states can be realized and manipulated to perform qubit operations, we propose a topological Josephson junction architecture that achieves these capabilities and whic
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across