ترغب بنشر مسار تعليمي؟ اضغط هنا

Majorana-Josephson Interferometer

80   0   0.0 ( 0 )
 نشر من قبل Chang-An Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an interferometer for chiral Majorana modes where the interference effect is caused and controlled by a Josephson junction of proximity-induced topological superconductors, hence, a Majorana-Josephson interferometer. This interferometer is based on a two-terminal quantum anomalous Hall bar, and as such its transport observables exhibit interference patterns depending on both the Josephson phase and the junction length. Observing these interference patterns will establish quantum coherent Majorana transport and further provide a powerful characterization tool for the relevant system.



قيم البحث

اقرأ أيضاً

Gate-tunable Josephson junctions (JJs) are the backbone of superconducting classical and quantum computation. Typically, these systems exploit low charge concentration materials, and present technological diffculties limiting their scalability. Surpr isingly, electric field modulation of supercurrent in metallic wires and JJs has been recently demonstrated. Here, we report the realization of titanium-based monolithic interferometers which allow tuning both JJs independently via voltage bias applied to capacitively-coupled electrodes. Our experiments demonstrate full control of the amplitude of the switching current (IS) and of the superconducting phase across the single JJ in a wide range of temperatures. Astoundingly, by gate-biasing a single junction the maximum achievable total IS suppresses down to values much lower than the critical current of a single JJ. A theoretical model including gate-induced phase fluctuations on a single junction accounts for our experimental findings. This class of quantum interferometers could represent a breakthrough for several applications such as digital electronics, quantum computing, sensitive magnetometry and single-photon detection.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outsi de the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
Topological superconductors which support Majorana fermions are thought to be realized in one-dimensional semiconducting wires coupled to a superconductor. Such excitations are expected to exhibit non-Abelian statistics and can be used to realize qua ntum gates that are topologically protected from local sources of decoherence. Here we report the observation of the fractional a.c. Josephson effect in a hybrid semiconductor/superconductor InSb/Nb nanowire junction, a hallmark of topological matter. When the junction is irradiated with a radio-frequency f in the absence of an external magnetic field, quantized voltage steps (Shapiro steps) with a height hf/2e are observed, as is expected for conventional superconductor junctions, where the supercurrent is carried by charge-2e Cooper pairs. At high magnetic fields the height of the first Shapiro step is doubled to hf/e, suggesting that the supercurrent is carried by charge-e quasiparticles. This is a unique signature of Majorana fermions, elusive particles predicted ca. 80 years ago.
As part of the intense effort towards identifying platforms in which Majorana bound states can be realized and manipulated to perform qubit operations, we propose a topological Josephson junction architecture that achieves these capabilities and whic h can be experimentally implemented. The platform uses conventional superconducting electrodes deposited on a topological insulator film to form networks of proximity-coupled lateral Josephson junctions. Magnetic fields threading the network of junction barriers create Josephson vortices that host Majorana bound states localized in the junction where the local phase difference is an odd multiple of $pi$, i.e. attached to the cores of the Josephson vortices. This enables us to manipulate the Majorana states by moving the Josephson vortices, achieving functionality exclusive to these systems in contrast to others, such as those composed of topological superconductor nanowires. We describe protocols for: 1) braiding localized Majorana states by exchange, 2) controlling the separation and hence the coupling of adjacent localized Majorana states to effect non-Abelian rotations via hybridization of the Majorana modes, and 3) reading out changes in the non-local parity correlations induced by such operations. These schemes make use of the application of current pulses and local magnetic field pulses to control the location of vortices, and measurements of the Josephson current-phase relation to reveal the presence of the Majorana bound states. We describe the architecture and schemes in the context of experiments currently underway.
79 - S. Ikegaya , Y. Asano 2016
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across the junction $varphi$ being $pi$, we will show that all of the Majorana bound states in the normal metal belong to the same chirality. Due to this pure chiral feature, the Majorana bound states retain their high degree of degeneracy at the zero energy even in the presence of random potential. As a consequence, the resonant transmission of a Cooper pair via the degenerate MBSs carries the Josephson current at $varphi=pi-0^+$, which explains the fractional current-phase relationship discussed in a number of previous papers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا