ﻻ يوجد ملخص باللغة العربية
Each end of a Kitaev chain in topological phase hosts a Majorana fermion. Zero bias conductance peak is an evidence of Majorana fermion when the two Majorana fermions are decoupled. These two Majorana fermions are separated in space and this nonlocal aspect can be probed when the two are coupled. Crossed Andreev reflection is the evidence of the nonlocality of Majorana fermions. Nonlocality of Majorana fermions has been proposed to be probed by noise measurements since simple conductance measurements cannot probe it due to the almost cancellation of currents from electron tunneling and crossed Andreev reflection. Kitaev ladders on the other hand host subgap Andreev states which can be used to control the relative currents due to crossed Andreev reflection and electron tunneling. We propose to employ Kitaev ladder in series with Kitaev chain and show that the transconductance in this setup can be used as a probe of nonlocality of Majorana fermions by enhancing crossed Andreev reflection over electron tunneling.
Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fra
We explore the tunneling transport properties of a quantum dot embedded in an optical microcavity and coupled to a semiconductor-superconductor one-dimensional nanowire (Majorana nanowire) hosting Majorana zero modes (MZMs) at their edges. Conductanc
We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-
I. Introduction (What is new in RMT, Superconducting quasiparticles, Experimental platforms) II. Topological superconductivity (Kitaev chain, Majorana operators, Majorana zero-modes, Phase transition beyond mean-field) III. Fundamental symmetries
Majorana bound states are interesting candidates for applications in topological quantum computation. Low energy models allowing to grasp their properties are hence conceptually important. The usual scenario in these models is that two relevant gappe