ﻻ يوجد ملخص باللغة العربية
A pair of Majorana zero modes (MZMs) constitutes a nonlocal qubit whose entropy is $log 2$. Upon strongly coupling one of the constituent MZMs to a reservoir with a continuous density of states, a universal entropy change of $frac{1}{2}log 2$ is expected to be observed across an intermediate temperature plateau. We adapt the entropy-measurement scheme that was the basis of a recent experiment [Hartman et. al., Nat. Phys. 14, 1083 (2018)] to the case of a proximitized topological system hosting MZMs, and propose a method to measure this $frac{1}{2}log 2$ entropy change --- an unambiguous signature of the nonlocal nature of the topological state. This approach offers an experimental strategy to distinguish MZMs from non-topological states.
Proposals for realizing Majorana fermions in condensed matter systems typically rely on magnetic fields, which degrade the proximitizing superconductor and plague the Majoranas detection. We propose an alternative scheme to realize Majoranas based on
Among the major approaches that are being pursued for realizing quantum bits, the Majorana-based platform has been the most recent to be launched. It attempts to realize qubits which store quantum information in a topologically-protected manner. The
The quantum evolution after a metallic lead is suddenly connected to an electron system contains information about the excitation spectrum of the combined system. We exploit this type of quantum quench to probe the presence of Majorana fermions at th
We study the low-energy transport properties of a hybrid device composed by a native quantum dot coupled to both ends of a topological superconducting nanowire section hosting Majorana zero-modes. The account of the coupling between the dot and the f
In this work, we demonstrate that making a cut (a narrow vacuum regime) in the bulk of a quantum anomalous Hall insulator (QAHI) creates a topologically protected single helical channel with counter-propagating electron modes, and inducing supercondu