ﻻ يوجد ملخص باللغة العربية
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment at the (100) interface between $beta$-Ga$_2$O$_3$ and (Ga$_{1-x}$In$_x$)$_2$O$_3$ at 12%, the nearest computationally treatable concentration. The alignment is strongly strain-dependent: it is of type-B staggered when the alloy is epitaxial on Ga$_2$O$_3$, and type-A straddling in a free-standing superlattice. Our results suggest a limited range of applicability of low-In-content GaInO alloys.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g
Using density-functional ab initio theoretical techniques, we study (Ga$_{1-x}$In$_x$)$_2$O$_3$ in both its equilibrium structures (monoclinic $beta$ and bixbyite) and over the whole range of composition. We establish that the alloy exhibits a large
Using density-functional ab initio calculations, we provide a revised phase diagram of (Ga$_{1-x}$In$_{x})_2$O$_3$. Three phases --monoclinic, hexagonal, cubic bixbyite-- compete for the ground state. In particular, in the $x$$sim$0.5 region we expec
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag
We report results of the dielectric and pyroelectric measurements on solid solutions of Ga$_2$$_-$$_x$Fe$_x$O$_3$ with x = 0.75, 1.0 and 1.25. These systems exhibit dipolar cluster glass behavior in addition to the spin glass behavior making them bel