ﻻ يوجد ملخص باللغة العربية
We present an end-to-end deep network model that performs meeting diarization from single-channel audio recordings. End-to-end diarization models have the advantage of handling speaker overlap and enabling straightforward handling of discriminative training, unlike traditional clustering-based diarization methods. The proposed system is designed to handle meetings with unknown numbers of speakers, using variable-number permutation-invariant cross-entropy based loss functions. We introduce several components that appear to help with diarization performance, including a local convolutional network followed by a global self-attention module, multi-task transfer learning using a speaker identification component, and a sequential approach where the model is refined with a second stage. These are trained and validated on simulated meeting data based on LibriSpeech and LibriTTS datasets; final evaluations are done using LibriCSS, which consists of simulated meetings recorded using real acoustics via loudspeaker playback. The proposed model performs better than previously proposed end-to-end diarization models on these data.
We present a novel online end-to-end neural diarization system, BW-EDA-EEND, that processes data incrementally for a variable number of speakers. The system is based on the Encoder-Decoder-Attractor (EDA) architecture of Horiguchi et al., but utilize
Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time fram
Dialect identification (DID) is a special case of general language identification (LID), but a more challenging problem due to the linguistic similarity between dialects. In this paper, we propose an end-to-end DID system and a Siamese neural network
In this paper we propose a new method of speaker diarization that employs a deep learning architecture to learn speaker embeddings. In contrast to the traditional approaches that build their speaker embeddings using manually hand-crafted spectral fea
In this paper, we propose a Convolutional Neural Network (CNN) based speaker recognition model for extracting robust speaker embeddings. The embedding can be extracted efficiently with linear activation in the embedding layer. To understand how the s