ترغب بنشر مسار تعليمي؟ اضغط هنا

BW-EDA-EEND: Streaming End-to-End Neural Speaker Diarization for a Variable Number of Speakers

341   0   0.0 ( 0 )
 نشر من قبل Andreas Stolcke
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel online end-to-end neural diarization system, BW-EDA-EEND, that processes data incrementally for a variable number of speakers. The system is based on the Encoder-Decoder-Attractor (EDA) architecture of Horiguchi et al., but utilizes the incremental Transformer encoder, attending only to its left contexts and using block-level recurrence in the hidden states to carry information from block to block, making the algorithm complexity linear in time. We propose two variants: For unlimited-latency BW-EDA-EEND, which processes inputs in linear time, we show only moderate degradation for up to two speakers using a context size of 10 seconds compared to offline EDA-EEND. With more than two speakers, the accuracy gap between online and offline grows, but the algorithm still outperforms a baseline offline clustering diarization system for one to four speakers with unlimited context size, and shows comparable accuracy with context size of 10 seconds. For limited-latency BW-EDA-EEND, which produces diarization outputs block-by-block as audio arrives, we show accuracy comparable to the offline clustering-based system.



قيم البحث

اقرأ أيضاً

We present an end-to-end deep network model that performs meeting diarization from single-channel audio recordings. End-to-end diarization models have the advantage of handling speaker overlap and enabling straightforward handling of discriminative t raining, unlike traditional clustering-based diarization methods. The proposed system is designed to handle meetings with unknown numbers of speakers, using variable-number permutation-invariant cross-entropy based loss functions. We introduce several components that appear to help with diarization performance, including a local convolutional network followed by a global self-attention module, multi-task transfer learning using a speaker identification component, and a sequential approach where the model is refined with a second stage. These are trained and validated on simulated meeting data based on LibriSpeech and LibriTTS datasets; final evaluations are done using LibriCSS, which consists of simulated meetings recorded using real acoustics via loudspeaker playback. The proposed model performs better than previously proposed end-to-end diarization models on these data.
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are constrained in the offline scenario. In this work, we propose the Streaming Unmixing and Recognition Transducer (SURT) for end-to-end multi-talker speech recognition. Our model employs the Recurrent Neural Network Transducer (RNN-T) as the backbone that can meet various latency constraints. We study two different model architectures that are based on a speaker-differentiator encoder and a mask encoder respectively. To train this model, we investigate the widely used Permutation Invariant Training (PIT) approach and the Heuristic Error Assignment Training (HEAT) approach. Based on experiments on the publicly available LibriSpeechMix dataset, we show that HEAT can achieve better accuracy compared with PIT, and the SURT model with 150 milliseconds algorithmic latency constraint compares favorably with the offline sequence-to-sequence based baseline model in terms of accuracy.
In this paper, we present a novel two-pass approach to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. Our model adopts the hybrid CTC/attention architecture, in which the conformer layers in the encoder are m odified. We propose a dynamic chunk-based attention strategy to allow arbitrary right context length. At inference time, the CTC decoder generates n-best hypotheses in a streaming way. The inference latency could be easily controlled by only changing the chunk size. The CTC hypotheses are then rescored by the attention decoder to get the final result. This efficient rescoring process causes very little sentence-level latency. Our experiments on the open 170-hour AISHELL-1 dataset show that, the proposed method can unify the streaming and non-streaming model simply and efficiently. On the AISHELL-1 test set, our unified model achieves 5.60% relative character error rate (CER) reduction in non-streaming ASR compared to a standard non-streaming transformer. The same model achieves 5.42% CER with 640ms latency in a streaming ASR system.
In this paper, we present a streaming end-to-end speech recognition model based on Monotonic Chunkwise Attention (MoCha) jointly trained with enhancement layers. Even though the MoCha attention enables streaming speech recognition with recognition ac curacy comparable to a full attention-based approach, training this model is sensitive to various factors such as the difficulty of training examples, hyper-parameters, and so on. Because of these issues, speech recognition accuracy of a MoCha-based model for clean speech drops significantly when a multi-style training approach is applied. Inspired by Curriculum Learning [1], we introduce two training strategies: Gradual Application of Enhanced Features (GAEF) and Gradual Reduction of Enhanced Loss (GREL). With GAEF, the model is initially trained using clean features. Subsequently, the portion of outputs from the enhancement layers gradually increases. With GREL, the portion of the Mean Squared Error (MSE) loss for the enhanced output gradually reduces as training proceeds. In experimental results on the LibriSpeech corpus and noisy far-field test sets, the proposed model with GAEF-GREL training strategies shows significantly better results than the conventional multi-style training approach.
We propose a new end-to-end neural diarization (EEND) system that is based on Conformer, a recently proposed neural architecture that combines convolutional mappings and Transformer to model both local and global dependencies in speech. We first show that data augmentation and convolutional subsampling layers enhance the original self-attentive EEND in the Transformer-based EEND, and then Conformer gives an additional gain over the Transformer-based EEND. However, we notice that the Conformer-based EEND does not generalize as well from simulated to real conversation data as the Transformer-based model. This leads us to quantify the mismatch between simulated data and real speaker behavior in terms of temporal statistics reflecting turn-taking between speakers, and investigate its correlation with diarization error. By mixing simulated and real data in EEND training, we mitigate the mismatch further, with Conformer-based EEND achieving 24% error reduction over the baseline SA-EEND system, and 10% improvement over the best augmented Transformer-based system, on two-speaker CALLHOME data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا