ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Neural Networks and Language Embeddings for End-to-End Dialect Recognition

78   0   0.0 ( 0 )
 نشر من قبل Suwon Shon
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Dialect identification (DID) is a special case of general language identification (LID), but a more challenging problem due to the linguistic similarity between dialects. In this paper, we propose an end-to-end DID system and a Siamese neural network to extract language embeddings. We use both acoustic and linguistic features for the DID task on the Arabic dialectal speech dataset: Multi-Genre Broadcast 3 (MGB-3). The end-to-end DID system was trained using three kinds of acoustic features: Mel-Frequency Cepstral Coefficients (MFCCs), log Mel-scale Filter Bank energies (FBANK) and spectrogram energies. We also investigated a dataset augmentation approach to achieve robust performance with limited data resources. Our linguistic feature research focused on learning similarities and dissimilarities between dialects using the Siamese network, so that we can reduce feature dimensionality as well as improve DID performance. The best system using a single feature set achieves 73% accuracy, while a fusion system using multiple features yields 78% on the MGB-3 dialect test set consisting of 5 dialects. The experimental results indicate that FBANK features achieve slightly better results than MFCCs. Dataset augmentation via speed perturbation appears to add significant robustness to the system. Although the Siamese network with language embeddings did not achieve as good a result as the end-to-end DID system, the two approaches had good synergy when combined together in a fused system.



قيم البحث

اقرأ أيضاً

Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time fram e components such as mel-filter-bank energies and the cepstral coefficients obtained from them, together with their first and second order derivatives, are processed as individual elements, while a natural alternative is to process such components as composed entities. We propose to group such elements in the form of quaternions and to process these quaternions using the established quaternion algebra. Quaternion numbers and quaternion neural networks have shown their efficiency to process multidimensional inputs as entities, to encode internal dependencies, and to solve many tasks with less learning parameters than real-valued models. This paper proposes to integrate multiple feature views in quaternion-valued convolutional neural network (QCNN), to be used for sequence-to-sequence mapping with the CTC model. Promising results are reported using simple QCNNs in phoneme recognition experiments with the TIMIT corpus. More precisely, QCNNs obtain a lower phoneme error rate (PER) with less learning parameters than a competing model based on real-valued CNNs.
126 - Ziqiang Shi , Huibin Lin , Liu Liu 2019
Deep gated convolutional networks have been proved to be very effective in single channel speech separation. However current state-of-the-art framework often considers training the gated convolutional networks in time-frequency (TF) domain. Such an a pproach will result in limited perceptual score, such as signal-to-distortion ratio (SDR) upper bound of separated utterances and also fail to exploit an end-to-end framework. In this paper we present an integrated simple and effective end-to-end approach to monaural speech separation, which consists of deep gated convolutional neural networks (GCNN) that takes the mixed utterance of two speakers and maps it to two separated utterances, where each utterance contains only one speakers voice. In addition long short-term memory (LSTM) is employed for long term temporal modeling. For the objective, we propose to train the network by directly optimizing utterance level SDR in a permutation invariant training (PIT) style. Our experiments on the public WSJ0-2mix data corpus demonstrate that this new scheme can produce more discriminative separated utterances and leading to performance improvement on the speaker separation task.
Deep dilated temporal convolutional networks (TCN) have been proved to be very effective in sequence modeling. In this paper we propose several improvements of TCN for end-to-end approach to monaural speech separation, which consists of 1) multi-scal e dynamic weighted gated dilated convolutional pyramids network (FurcaPy), 2) gated TCN with intra-parallel convolutional components (FurcaPa), 3) weight-shared multi-scale gated TCN (FurcaSh), 4) dilated TCN with gated difference-convolutional component (FurcaSu), that all these networks take the mixed utterance of two speakers and maps it to two separated utterances, where each utterance contains only one speakers voice. For the objective, we propose to train the network by directly optimizing utterance level signal-to-distortion ratio (SDR) in a permutation invariant training (PIT) style. Our experiments on the the public WSJ0-2mix data corpus results in 18.4dB SDR improvement, which shows our proposed networks can leads to performance improvement on the speaker separation task.
77 - Lu Ma , Song Yang , Yaguang Gong 2021
Acoustic Echo Cancellation (AEC) whose aim is to suppress the echo originated from acoustic coupling between loudspeakers and microphones, plays a key role in voice interaction. Linear adaptive filter (AF) is always used for handling this problem. Ho wever, since there would be some severe effects in real scenarios, such nonlinear distortions, background noises, and microphone clipping, it would lead to considerable residual echo, giving poor performance in practice. In this paper, we propose an end-to-end network structure for echo cancellation, which is directly done on time-domain audio waveform. It is transformed to deep representation by temporal convolution, and modelled by Long Short-Term Memory (LSTM) for considering temporal property. Since time delay and severe reverberation may exist at the near-end with respect to the far-end, a local attention is employed for alignment. The network is trained using multitask learning by employing an auxiliary classification network for double-talk detection. Experiments show the superiority of our proposed method in terms of the echo return loss enhancement (ERLE) for single-talk periods and the perceptual evaluation of speech quality (PESQ) score for double-talk periods in background noise and nonlinear distortion scenarios.
Recently, streaming end-to-end automatic speech recognition (E2E-ASR) has gained more and more attention. Many efforts have been paid to turn the non-streaming attention-based E2E-ASR system into streaming architecture. In this work, we propose a nov el online E2E-ASR system by using Streaming Chunk-Aware Multihead Attention(SCAMA) and a latency control memory equipped self-attention network (LC-SAN-M). LC-SAN-M uses chunk-level input to control the latency of encoder. As to SCAMA, a jointly trained predictor is used to control the output of encoder when feeding to decoder, which enables decoder to generate output in streaming manner. Experimental results on the open 170-hour AISHELL-1 and an industrial-level 20000-hour Mandarin speech recognition tasks show that our approach can significantly outperform the MoChA-based baseline system under comparable setup. On the AISHELL-1 task, our proposed method achieves a character error rate (CER) of 7.39%, to the best of our knowledge, which is the best published performance for online ASR.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا