ﻻ يوجد ملخص باللغة العربية
Simultaneous translation, which starts translating each sentence after receiving only a few words in source sentence, has a vital role in many scenarios. Although the previous prefix-to-prefix framework is considered suitable for simultaneous translation and achieves good performance, it still has two inevitable drawbacks: the high computational resource costs caused by the need to train a separate model for each latency $k$ and the insufficient ability to encode information because each target token can only attend to a specific source prefix. We propose a novel framework that adopts a simple but effective decoding strategy which is designed for full-sentence models. Within this framework, training a single full-sentence model can achieve arbitrary given latency and save computational resources. Besides, with the competence of the full-sentence model to encode the whole sentence, our decoding strategy can enhance the information maintained in the decoded states in real time. Experimental results show that our method achieves better translation quality than baselines on 4 directions: Zh$rightarrow$En, En$rightarrow$Ro and En$leftrightarrow$De.
Simultaneous translation has many important application scenarios and attracts much attention from both academia and industry recently. Most existing frameworks, however, have difficulties in balancing between the translation quality and latency, i.e
We propose a sentence-level language model which selects the next sentence in a story from a finite set of fluent alternatives. Since it does not need to model fluency, the sentence-level language model can focus on longer range dependencies, which a
Inspired by evidence that pretrained language models (LMs) encode commonsense knowledge, recent work has applied LMs to automatically populate commonsense knowledge graphs (CKGs). However, there is a lack of understanding on their generalization to m
Pre-training models such as BERT have achieved great success in many natural language processing tasks. However, how to obtain better sentence representation through these pre-training models is still worthy to exploit. Previous work has shown that t
Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, m