ترغب بنشر مسار تعليمي؟ اضغط هنا

Full-Sentence Models Perform Better in Simultaneous Translation Using the Information Enhanced Decoding Strategy

47   0   0.0 ( 0 )
 نشر من قبل Zhenxin Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Zhengxin Yang




اسأل ChatGPT حول البحث

Simultaneous translation, which starts translating each sentence after receiving only a few words in source sentence, has a vital role in many scenarios. Although the previous prefix-to-prefix framework is considered suitable for simultaneous translation and achieves good performance, it still has two inevitable drawbacks: the high computational resource costs caused by the need to train a separate model for each latency $k$ and the insufficient ability to encode information because each target token can only attend to a specific source prefix. We propose a novel framework that adopts a simple but effective decoding strategy which is designed for full-sentence models. Within this framework, training a single full-sentence model can achieve arbitrary given latency and save computational resources. Besides, with the competence of the full-sentence model to encode the whole sentence, our decoding strategy can enhance the information maintained in the decoded states in real time. Experimental results show that our method achieves better translation quality than baselines on 4 directions: Zh$rightarrow$En, En$rightarrow$Ro and En$leftrightarrow$De.



قيم البحث

اقرأ أيضاً

Simultaneous translation has many important application scenarios and attracts much attention from both academia and industry recently. Most existing frameworks, however, have difficulties in balancing between the translation quality and latency, i.e ., the decoding policy is usually either too aggressive or too conservative. We propose an opportunistic decoding technique with timely correction ability, which always (over-)generates a certain mount of extra words at each step to keep the audience on track with the latest information. At the same time, it also corrects, in a timely fashion, the mistakes in the former overgenerated words when observing more source context to ensure high translation quality. Experiments show our technique achieves substantial reduction in latency and up to +3.1 increase in BLEU, with revision rate under 8% in Chinese-to-English and English-to-Chinese translation.
We propose a sentence-level language model which selects the next sentence in a story from a finite set of fluent alternatives. Since it does not need to model fluency, the sentence-level language model can focus on longer range dependencies, which a re crucial for multi-sentence coherence. Rather than dealing with individual words, our method treats the story so far as a list of pre-trained sentence embeddings and predicts an embedding for the next sentence, which is more efficient than predicting word embeddings. Notably this allows us to consider a large number of candidates for the next sentence during training. We demonstrate the effectiveness of our approach with state-of-the-art accuracy on the unsupervised Story Cloze task and with promising results on larger-scale next sentence prediction tasks.
Inspired by evidence that pretrained language models (LMs) encode commonsense knowledge, recent work has applied LMs to automatically populate commonsense knowledge graphs (CKGs). However, there is a lack of understanding on their generalization to m ultiple CKGs, unseen relations, and novel entities. This paper analyzes the ability of LMs to perform generalizable commonsense inference, in terms of knowledge capacity, transferability, and induction. Our experiments with these three aspects show that: (1) LMs can adapt to different schemas defined by multiple CKGs but fail to reuse the knowledge to generalize to new relations. (2) Adapted LMs generalize well to unseen subjects, but less so on novel objects. Future work should investigate how to improve the transferability and induction of commonsense mining from LMs.
Pre-training models such as BERT have achieved great success in many natural language processing tasks. However, how to obtain better sentence representation through these pre-training models is still worthy to exploit. Previous work has shown that t he anisotropy problem is an critical bottleneck for BERT-based sentence representation which hinders the model to fully utilize the underlying semantic features. Therefore, some attempts of boosting the isotropy of sentence distribution, such as flow-based model, have been applied to sentence representations and achieved some improvement. In this paper, we find that the whitening operation in traditional machine learning can similarly enhance the isotropy of sentence representations and achieve competitive results. Furthermore, the whitening technique is also capable of reducing the dimensionality of the sentence representation. Our experimental results show that it can not only achieve promising performance but also significantly reduce the storage cost and accelerate the model retrieval speed.
Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, m ost of these models cannot recognize the difference in meaning caused by a change in semantic roles of words or phrases because they do not acknowledge the type of grammatical relations, also known as typed dependencies, in sentence structure. This paper proposes an enhanced LSTM architecture, called relation gated LSTM, which can model the relationship between two inputs of a sequence using a control input. We also introduce a Tree-LSTM model called Typed Dependency Tree-LSTM that uses the sentence dependency parse structure as well as the dependency type to embed sentence meaning into a dense vector. The proposed model outperformed its type-unaware counterpart in two typical NLP tasks - Semantic Relatedness Scoring and Sentiment Analysis, in a lesser number of training epochs. The results were comparable or competitive with other state-of-the-art models. Qualitative analysis showed that changes in the voice of sentences had little effect on the models predicted scores, while changes in nominal (noun) words had a more significant impact. The model recognized subtle semantic relationships in sentence pairs. The magnitudes of learned typed dependencies embeddings were also in agreement with human intuitions. The research findings imply the significance of grammatical relations in sentence modeling. The proposed models would serve as a base for future researches in this direction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا