ترغب بنشر مسار تعليمي؟ اضغط هنا

Whitening Sentence Representations for Better Semantics and Faster Retrieval

113   0   0.0 ( 0 )
 نشر من قبل Jianlin Su
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-training models such as BERT have achieved great success in many natural language processing tasks. However, how to obtain better sentence representation through these pre-training models is still worthy to exploit. Previous work has shown that the anisotropy problem is an critical bottleneck for BERT-based sentence representation which hinders the model to fully utilize the underlying semantic features. Therefore, some attempts of boosting the isotropy of sentence distribution, such as flow-based model, have been applied to sentence representations and achieved some improvement. In this paper, we find that the whitening operation in traditional machine learning can similarly enhance the isotropy of sentence representations and achieve competitive results. Furthermore, the whitening technique is also capable of reducing the dimensionality of the sentence representation. Our experimental results show that it can not only achieve promising performance but also significantly reduce the storage cost and accelerate the model retrieval speed.

قيم البحث

اقرأ أيضاً

In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the probl em of predicting the context in which a sentence appears as a classification problem. Given a sentence and its context, a classifier distinguishes context sentences from other contrastive sentences based on their vector representations. This allows us to efficiently learn different types of encoding functions, and we show that the model learns high-quality sentence representations. We demonstrate that our sentence representations outperform state-of-the-art unsupervised and supervised representation learning methods on several downstream NLP tasks that involve understanding sentence semantics while achieving an order of magnitude speedup in training time.
Although BERT and its variants have reshaped the NLP landscape, it still remains unclear how best to derive sentence embeddings from such pre-trained Transformers. In this work, we propose a contrastive learning method that utilizes self-guidance for improving the quality of BERT sentence representations. Our method fine-tunes BERT in a self-supervised fashion, does not rely on data augmentation, and enables the usual [CLS] token embeddings to function as sentence vectors. Moreover, we redesign the contrastive learning objective (NT-Xent) and apply it to sentence representation learning. We demonstrate with extensive experiments that our approach is more effective than competitive baselines on diverse sentence-related tasks. We also show it is efficient at inference and robust to domain shifts.
Question Answering (QA) systems are used to provide proper responses to users questions automatically. Sentence matching is an essential task in the QA systems and is usually reformulated as a Paraphrase Identification (PI) problem. Given a question, the aim of the task is to find the most similar question from a QA knowledge base. In this paper, we propose a Multi-task Sentence Encoding Model (MSEM) for the PI problem, wherein a connected graph is employed to depict the relation between sentences, and a multi-task learning model is applied to address both the sentence matching and sentence intent classification problem. In addition, we implement a general semantic retrieval framework that combines our proposed model and the Approximate Nearest Neighbor (ANN) technology, which enables us to find the most similar question from all available candidates very quickly during online serving. The experiments show the superiority of our proposed method as compared with the existing sentence matching models.
293 - Sunipa Dev 2020
High-dimensional representations for words, text, images, knowledge graphs and other structured data are commonly used in different paradigms of machine learning and data mining. These representations have different degrees of interpretability, with efficient distributed representations coming at the cost of the loss of feature to dimension mapping. This implies that there is obfuscation in the way concepts are captured in these embedding spaces. Its effects are seen in many representations and tasks, one particularly problematic one being in language representations where the societal biases, learned from underlying data, are captured and occluded in unknown dimensions and subspaces. As a result, invalid associations (such as different races and their association with a polar notion of good versus bad) are made and propagated by the representations, leading to unfair outcomes in different tasks where they are used. This work addresses some of these problems pertaining to the transparency and interpretability of such representations. A primary focus is the detection, quantification, and mitigation of socially biased associations in language representation.
We introduce two pre-trained retrieval focused multilingual sentence encoding models, respectively based on the Transformer and CNN model architectures. The models embed text from 16 languages into a single semantic space using a multi-task trained d ual-encoder that learns tied representations using translation based bridge tasks (Chidambaram al., 2018). The models provide performance that is competitive with the state-of-the-art on: semantic retrieval (SR), translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On English transfer learning tasks, our sentence-level embeddings approach, and in some cases exceed, the performance of monolingual, English only, sentence embedding models. Our models are made available for download on TensorFlow Hub.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا