ترغب بنشر مسار تعليمي؟ اضغط هنا

An enhanced Tree-LSTM architecture for sentence semantic modeling using typed dependencies

57   0   0.0 ( 0 )
 نشر من قبل Jeena Kleenankandy
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tree-based Long short term memory (LSTM) network has become state-of-the-art for modeling the meaning of language texts as they can effectively exploit the grammatical syntax and thereby non-linear dependencies among words of the sentence. However, most of these models cannot recognize the difference in meaning caused by a change in semantic roles of words or phrases because they do not acknowledge the type of grammatical relations, also known as typed dependencies, in sentence structure. This paper proposes an enhanced LSTM architecture, called relation gated LSTM, which can model the relationship between two inputs of a sequence using a control input. We also introduce a Tree-LSTM model called Typed Dependency Tree-LSTM that uses the sentence dependency parse structure as well as the dependency type to embed sentence meaning into a dense vector. The proposed model outperformed its type-unaware counterpart in two typical NLP tasks - Semantic Relatedness Scoring and Sentiment Analysis, in a lesser number of training epochs. The results were comparable or competitive with other state-of-the-art models. Qualitative analysis showed that changes in the voice of sentences had little effect on the models predicted scores, while changes in nominal (noun) words had a more significant impact. The model recognized subtle semantic relationships in sentence pairs. The magnitudes of learned typed dependencies embeddings were also in agreement with human intuitions. The research findings imply the significance of grammatical relations in sentence modeling. The proposed models would serve as a base for future researches in this direction.



قيم البحث

اقرأ أيضاً

Modeling the structure of coherent texts is a key NLP problem. The task of coherently organizing a given set of sentences has been commonly used to build and evaluate models that understand such structure. We propose an end-to-end unsupervised deep l earning approach based on the set-to-sequence framework to address this problem. Our model strongly outperforms prior methods in the order discrimination task and a novel task of ordering abstracts from scientific articles. Furthermore, our work shows that useful text representations can be obtained by learning to order sentences. Visualizing the learned sentence representations shows that the model captures high-level logical structure in paragraphs. Our representations perform comparably to state-of-the-art pre-training methods on sentence similarity and paraphrase detection tasks.
The meaning of a sentence is a function of the relations that hold between its words. We instantiate this relational view of semantics in a series of neural models based on variants of relation networks (RNs) which represent a set of objects (for us, words forming a sentence) in terms of representations of pairs of objects. We propose two extensions to the basic RN model for natural language. First, building on the intuition that not all word pairs are equally informative about the meaning of a sentence, we use constraints based on both supervised and unsupervised dependency syntax to control which relations influence the representation. Second, since higher-order relations are poorly captured by a sum of pairwise relations, we use a recurrent extension of RNs to propagate information so as to form representations of higher order relations. Experiments on sentence classification, sentence pair classification, and machine translation reveal that, while basic RNs are only modestly effective for sentence representation, recurrent RNs with latent syntax are a reliably powerful representational device.
There is a small but growing body of research on statistical scripts, models of event sequences that allow probabilistic inference of implicit events from documents. These systems operate on structured verb-argument events produced by an NLP pipeline . We compare these systems with recent Recurrent Neural Net models that directly operate on raw tokens to predict sentences, finding the latter to be roughly comparable to the former in terms of predicting missing events in documents.
In this work we propose a simple and efficient framework for learning sentence representations from unlabelled data. Drawing inspiration from the distributional hypothesis and recent work on learning sentence representations, we reformulate the probl em of predicting the context in which a sentence appears as a classification problem. Given a sentence and its context, a classifier distinguishes context sentences from other contrastive sentences based on their vector representations. This allows us to efficiently learn different types of encoding functions, and we show that the model learns high-quality sentence representations. We demonstrate that our sentence representations outperform state-of-the-art unsupervised and supervised representation learning methods on several downstream NLP tasks that involve understanding sentence semantics while achieving an order of magnitude speedup in training time.
This paper introduces a sentence to vector encoding framework suitable for advanced natural language processing. Our latent representation is shown to encode sentences with common semantic information with similar vector representations. The vector r epresentation is extracted from an encoder-decoder model which is trained on sentence paraphrase pairs. We demonstrate the application of the sentence representations for two different tasks -- sentence paraphrasing and paragraph summarization, making it attractive for commonly used recurrent frameworks that process text. Experimental results help gain insight how vector representations are suitable for advanced language embedding.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا